您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (3): 19-24.doi: 10.6040/j.issn.1671-9352.0.2022.167

• • 上一篇    下一篇

核-EP分解的弱核逆

程杨,崔雨茹   

  1. 安徽师范大学数学与统计学院, 安徽 芜湖 241002
  • 发布日期:2023-03-02
  • 作者简介:程杨(1998— ),女,硕士研究生,研究方向为广义逆. E-mail:1904169429@qq.com
  • 基金资助:
    安徽省自然科学基金资助项目(2008085MA06);安徽省高校优秀青年人才计划项目(gxyqZD2019009)

Weak core inverse of core-EP decomposition

CHENG Yang, CUI Yu-ru   

  1. College of Mathematics and Statistics, Anhui Normal University, Wuhu 241002, Anhui, China
  • Published:2023-03-02

摘要: 基于矩阵的核-EP分解,研究复矩阵的弱核逆。对于复矩阵A,给出了A的弱核逆A,+新的表述, 讨论了AA,+=A,+A成立的等价刻画,并研究了(Am),+与(A,+)m的联系。

关键词: 弱核逆, 核-EP分解, 弱群逆, DMP逆

Abstract: Based on core-EP decomposition of a matrix, the weak core inverse of a complex matrix is studied. For a complex matrix A, a new representation of the weak core inverse A,+ of A is given, and some equivalent characterizations of AA,+=A,+A are presented, as well as the relation between(Am),+ and(A,+)m is investigated.

Key words: weak core inverse, core-EP decomposition, weak group inverse, DMP inverse

中图分类号: 

  • O151.21
[1] PENROSE R. A generalized inverse for matrices[J]. Proc Cambridge Philos Soc, 1955, 51:406-413.
[2] BEN-ISRAEL A, GREVILLE T N E. Generalized inverses: theory and applications[M]. New York: Spring-Verlag, 2003: 163-172.
[3] MANJUNATHA P K, MOHANA K S. Core-EP inverse[J]. Linear & Multilinear Algebra, 2014, 62(6):792-802.
[4] WANG Hongxing, CHEN Jianlong. Weak group inverse[J]. Open Mathematics, 2018, 16(1):1218-1232.
[5] MALIK S B, THOME N. On a new generalized inverse for matrices of an arbitrary index[J]. Applied Mathematics and Computation, 2014, 226:575-580.
[6] FERREYRA D E, LEVIS F E, PRIORI A N, et al. The weak core inverse[J]. Aequationes Mathematicae, 2021, 95(2):351-373.
[7] FU Zhimei, ZUO Kezheng, CHEN Yang. Further characterizations of the weak core inverse of matrices and the weak core matrix[J]. AIMS Math, 2022, 7(3):3630-3647.
[8] WANG Hongxing. Core-EP decomposition and Its applications[J]. Linear Algebra and Its Application, 2016, 508(1):289-300.
[9] HARTWIG R E, SPINDELBÖCK K. Matrices for which A* and A+ commute[J]. Linear & Multilinear Algebra, 1983, 14(3):241-256.
[10] FERREYRA D E, LEVIS F E, THOME N. Maximal classes of matrices determining generalized inverses[J]. Applied Mathematics and Computation, 2018, 333:42-52.
[1] 蹇渊, 刘丁酉. 一类区间三对角矩阵特征值的确界[J]. 山东大学学报(理学版), 2015, 50(12): 15-22.
[2] 凌思涛 程学汉 魏木生. 一般线性四元数矩阵方程的Hermite解[J]. J4, 2008, 43(12): 1-4.
[3] 宋彩芹,赵建立,李东方 . 矩阵左半张量积的(T,S,2)-逆的反序律[J]. J4, 2008, 43(6): 71-76 .
[4] 赵建立,李 莹,张丽梅 . 四元数矩阵的OR分解及等式约束最小二乘问题[J]. J4, 2007, 42(6): 65-68 .
[5] 胡付高,曾玉娥 . 一类矩阵多项式秩的恒等式与应用[J]. J4, 2008, 43(8): 51-54 .
[6] 袁晖坪 . 行(列)对称矩阵的Schur分解和正规阵分解[J]. J4, 2007, 42(10): 123-126 .
[7] 王廷明,黎伯堂 . 一类矩阵秩恒等式的证明[J]. J4, 2007, 42(2): 43-45 .
[8] 贾志刚,赵建立,张凤霞 . 广义对称矩阵的特征问题及其奇异值分解[J]. J4, 2007, 42(12): 15-18 .
[9] 程彦亮,邵勇. 半环的格林关系所确定的半环簇[J]. 《山东大学学报(理学版)》, 2021, 56(4): 1-7.
[10] 尹娇娇,邵勇,韩金. 反环上的e-可逆矩阵[J]. 《山东大学学报(理学版)》, 2020, 55(4): 67-73.
[11] 赵亚琪,任芳国. 关于矩阵的表示及其在熵中应用[J]. 《山东大学学报(理学版)》, 2021, 56(11): 97-104.
[12] 王俊玲,邵勇. 一类乘法幂等半环的格林关系[J]. 《山东大学学报(理学版)》, 2022, 57(6): 15-22.
[13] 邓伟娜,赵宪钟. 保持二元布尔半环上矩阵的传递闭包的线性算子[J]. 《山东大学学报(理学版)》, 2022, 57(12): 64-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!