《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (12): 54-59.doi: 10.6040/j.issn.1671-9352.0.2023.141
舒琴,龚何余,赵平*
SHU Qin, GONG Heyu, ZHAO Ping*
摘要: 设Pn是Xn={1,2,…,n}上的部分变换半群。对任意1≤r≤n,令P F(n,r)={α∈Pn:iα=i, ∠i∈dom(α)∩{1,2,…,r}},则P F(n,r)是Pn的子半群。本文将研究半群P F(n,r)的秩, 其中1≤r≤n-1。对于n≥3, 证明了rank(P F(n,r))={2+2r,〓n-r=1,3+2r,〓n-r=2,4+2r,〓n-r≥3。
中图分类号:
[1] HOWIE J M. Idemotent generators in finite full transformation semigroups* [J]. Proceedings of the Royal Society of Edinburgh, 1978, 81(A):317-323. [2] HONYAM P, SANWONG J. Semigroups of transformations with fixed sets [J]. Quaestiones Mathematicae, 2013, 36:79-92. [3] GOMES G M S, HOWIE J M. On the ranks of certain finite semigroups of transformations[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1987, 101:395-403. [4] HOWIE J M, MCFADDEN R B. Idempotent rank in finite full transformation semigroups[J]. Proceedings of the Royal Society of Edinburgh, 1990, 114(3/4):161-167. [5] GOMES G M S, HOWIE J M. On the ranks of certain semigroups of order-preserving transformations[J]. Semigroup Forum, 1992, 45:272-282. [6] GARBA G U. On the idempotent ranks of certain semigroups of order-preserving transformations[J]. Portugaliae Mathematics, 1994, 51:185-204. [7] LEVI I. Nilpotent ranks of semigroups of partial transformations[J]. Semigroup Forum, 2006, 72:459-476. [8] CEGARRA A M, PETRICH M. The rank of a commutative semigroup[J]. Mathematica Bohemica, 2009, 134(3):301-318. [9] XU B, GAO R H. The rank of a class of transformation semigroups[J]. Mathematics in Practice and Theory, 2010(8):222-224. [10] ZHAO P. The ranks of ideals in various transformation monoids[J]. Communications in Algebra, 2015, 43:674-692. [11] ZHAO P, YOU T J. The(p,q)-potent ranks of certain semigroups of transformations[J]. Journal of Algebra and Its Applications, 2017, 16(7):1-12. [12] ZHAO P. On the nilpotent ranks of the principal factors of orientation-preserving transformation semigroups[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41(4):1795-1803. [13] KORKMAZ E. Ranks of nilpotent subsemigroups of order-preserving and decreasing transformation semigroups[J]. Turkish Journal of Mathematics, 2021, 45:1626-1634. [14] AYLK G, ABUSARRIS H D M. On the rank of generalized transformation semigroups[J]. Bulletin of the Malaysian Mathematical Mciences Society, 2022, 45:1777-1787. [15] HOWIE J M. Fundamentals of semigroup theory[M]. London: Oxford University Press, 2003. |
[1] | 龚何余,舒琴,赵平. 半群 |
[2] | 韦芳,王长鹏. 基于双高斯先验的低秩矩阵分解模型[J]. 《山东大学学报(理学版)》, 2023, 58(3): 101-108. |
[3] | 李心雨,范辉,刘惊雷. 基于自适应图调节和低秩矩阵分解的鲁棒聚类[J]. 《山东大学学报(理学版)》, 2022, 57(8): 21-38. |
[4] | 徐波,高荣海,卢琳璋,游泰杰. 1-奇异变换半群Tn(1)的秩[J]. 《山东大学学报(理学版)》, 2022, 57(12): 81-85. |
[5] | 钟堃琰,刘惊雷. 基于低秩类间稀疏判别最小二乘回归的图像分类[J]. 《山东大学学报(理学版)》, 2022, 57(11): 89-101. |
[6] | 张钰倩,张太雷. 具有复发效应的SEAIR模型及在新冠肺炎传染病中的应用[J]. 《山东大学学报(理学版)》, 2022, 57(1): 56-68. |
[7] | 张前滔,罗永贵,赵平. 半群PD(n,r)的秩和相关秩[J]. 《山东大学学报(理学版)》, 2020, 55(10): 63-70. |
[8] | 陈东,王芳贵,蹇红,陈明钊. 2-强Gorenstein半单环上模的结构及其应用[J]. 山东大学学报(理学版), 2018, 53(4): 24-30. |
[9] | 崔安刚,李海洋. 仿射约束矩阵秩最小问题与无约束矩阵秩最小问题的等价性[J]. 山东大学学报(理学版), 2016, 51(4): 86-89. |
[10] | 代丽芳, 梁茂林, 何万生. 广义对称约束条件下矩阵表达式A-BXC 的极秩问题[J]. 山东大学学报(理学版), 2015, 50(02): 90-94. |
[11] | 罗永贵,徐波,游泰杰. 半群PHn的每个星理想的秩和幂等元秩[J]. J4, 2013, 48(2): 42-48. |
[12] | 罗永贵. 半群W(n,r)的非群元秩和相关秩[J]. J4, 2013, 48(12): 70-74. |
[13] | 江静1,李宁2,王婷1. 一矩阵方程组可解条件的研究[J]. J4, 2013, 48(10): 47-50. |
[14] | 赵平. 半群V(n,r)的幂等元秩[J]. J4, 2012, 47(2): 78-81. |
[15] | 高荣海1,2,徐波1. 关于保序压缩奇异变换半群的秩[J]. J4, 2011, 46(6): 4-7. |
|