《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (11): 89-101.doi: 10.6040/j.issn.1671-9352.4.2021.199
• • 上一篇
钟堃琰,刘惊雷*
ZHONG Kun-yan, LIU Jing-lei*
摘要: 在多分类任务中基于最小二乘回归(least squares regression,LSR)的分类器是有效的,但大多数现有方法因使用有限的投影而损失许多判别信息,有的算法只关注样本与目标矩阵的精确拟合而忽略了过拟合问题。为了解决这些问题并提高分类性能,本文提出了一种基于低秩类间稀疏性的判别最小二乘回归(low-rank inter-class sparsity discriminative least squares regression,LRICSDLSR)的多类图像的分类方法。在判别最小二乘回归模型中引入类间稀疏性约束,使得来自同一类的样本间隔大大减小,而来自不同类的样本的间隔增大;对由非负松弛矩阵获得的松弛标签施加低秩约束,以提高其类内紧凑性和相似性;在学习标签上引入了一个额外的正则化项,以避免过拟合问题。实验结果表明,这3个改进有助于学习明显的回归投影,从而实现更好的分类性能。
中图分类号:
[1] ZHANG Zheng, LAI Zhihui, XU Yong, et al. Discriminative elastic-netregularized linear regression[J]. IEEE Transactions on Image Processing, 2017, 26(3):1466-1481. [2] CHEN Zhe, WU Xiaojun, KITTLER J. A sparse regularized nuclear norm based matrix regression for face recognition with contiguous occlusion[J]. Pattern Recognition Letters, 2019, 125:494-499. [3] YUAN H L, LI J Y, LAI L L, et al. Low-rank matrix regression for image feature extraction and feature selection-sciencedirect[J]. Information Sciences, 2020, 522:214-226. [4] RUPPERT D, WAND M P. Multivariate locally weighted least squares regression[J]. The Annals of Statistics, 1994, 22(3):1346-1370. [5] RUPPERT D, SHEATHER S J, WAND M P. An effective bandwidth selector for local least squares regression[J]. Journal of the American Statistical Association, 1995, 90(432):1257-1270. [6] TIBSHIRANI R. Regression shrinkage and selection via the LASSO: a retrospective[J]. Journal of the Royal Statistical Society: Series B(Statistical Methodology), 2011, 73(3):267-288. [7] AN S J, LIU W Q, VENKATESH S. Face recognition using kernel ridge regression[C] //IEEE Conference on Computer Vision & Pattern Recognition. Piscataway: IEEE, 2007. [8] AVRON H, CLARKSON K, WOODRUFF D. Faster kernel ridge regression using sketching and preconditioning[J]. SIAM Journal on Matrix Analysis and Applications, 2017, 38(4):1116-1138. [9] STRUTZ T. Data fitting and uncertainty(a practical introduction to weighted least squares and beyond)[M]. Wiesbaden: Vieweg and Teubner, 2010. [10] JIAO Liecheng, BO Liefeng, WANG Ling. Fast sparse approximation for least squares support vector machine[J]. IEEE Transactions on Neural Networks, 2007, 18(3):685-697. [11] ABDI H. Partial least squares regression and projection on latent structure regression(PLS Regression)[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2(1):97-106. [12] XIANG Shiming, NIE Feiping, MENG Gaofei. Discriminative least squares regression for multiclass classification and feature selection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(11):1738-1754. [13] ZHANG Xuyao, WANG Linfeng, XIANG Shiming, et al. Retargeted least squares regression algorithm[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(9):2206-2213. [14] WANG Linfeng, PAN Chuhong. Groupwise retargeted least squares regression[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(4):1352-1358. [15] FANG Xiaozhao, YONG Xu, LI Xuelong, et al. Regularized label relaxation linear regression[J]. IEEE Transactions on Neural Networks & Learning Systems, 2018, 29(4):1006-1018. [16] FANG Xiaozhao, TENG Shaohua, LAI Zhihui, et al. Robust latent subspace learning for image classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 29(6):2502-2515. [17] WEN Jie, XU Yong, LI Zuoyong, et al. Inter-class sparsity based discriminative least square regression[J]. Neural Networks, 2018, 102(1):36-47. [18] BOYD S, PARIKH N, HU E C, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2010, 3(1):1-122. [19] CAI J F, CANDES J E, SHEN Z W. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4):1956-1982. [20] YUAN Aihong, YOU Mengbo, HE Dongjian. Convex non-negative matrix factorization with adaptive graph for unsupervised feature selection[J]. IEEE Transactions on Cybernetics, 2020, 1(99):1-13. [21] FANG Xiaozhao, HAN Na, WU Jikang, et al. Approximate low-rank projection learning for feature extraction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(11):5228-5241. [22] JIANG Z L, LIN Z, DAVIS L S. Learning a discriminative dictionary for sparse coding via label consistent K-SVD[C] //IEEE Conference on Computer Vision & Pattern Recognition. Piscataway:IEEE, 2011. [23] LEARNED-MILLER E, HUANG G B, ROYCHOWDHURY A, et al. Labeled faces in the wild: a survey[M] //Advances in Face Detection and Facial Image Analysis. Berlin: Springer International Publishing, 2016. [24] BOUREAU Y L, BACH F, LECUN Y, et al. Learning mid-level features for recognition[C] //Proc. International Conference on Computer Vision and Pattern Recognition(CVPR'10). Piscataway: IEEE, 2010. [25] LI Hui, WU Xiaojun. DenseFuse: a fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2019, 28(5):2614-2623. [26] XU Tianyang, FENG Zhenhua, WU Xiaojun, et al. Joint group feature selection and discriminative filter learning for robust visual object tracking[J/OL]. arXiv, 2019. https://arxiv.org/abs/1907.13242. [27] XU Tianyang, FENG Zhenhua, WU Xiaojun. Learning adaptive discriminative correlation filters via temporal consistency preserving spatial feature selection for robust visual object tracking[J]. IEEE Transactions on Image Processing, 2019, 28(11):5596-5609. [28] HOU Chenping, JIAO Yuanyuan, NIE Feiping. 2D feature selection by sparse matrix regression[J]. IEEE Transactions on Image Processing, 2017, 26(9):4255-4268. [29] DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C] //Proc. International Conference on Computer vision and Pattern Recognition(CVPR). Florida: IEEE, 2009. [30] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J/OL]. arXiv, 2014. https://arxiv.org/abs/1409.1556. [31] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C] //Processing of in 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE, 2016. |
[1] | 李心雨,范辉,刘惊雷. 基于自适应图调节和低秩矩阵分解的鲁棒聚类[J]. 《山东大学学报(理学版)》, 2022, 57(8): 21-38. |
[2] | 宁志强,潘峰,钮可,陈培. 基于回归预测的运动矢量可逆信息隐藏[J]. 《山东大学学报(理学版)》, 2022, 57(5): 66-73. |
[3] | 娘毛措, 陈占寿, 成守尧, 汪肖阳. 具有长记忆误差的线性回归模型参数变点的在线监测[J]. 《山东大学学报(理学版)》, 2022, 57(4): 91-99. |
[4] | 张要,马盈仓,杨小飞,朱恒东,杨婷. 结合流形结构与柔性嵌入的多标签特征选择[J]. 《山东大学学报(理学版)》, 2021, 56(7): 91-102. |
[5] | 赵亚琪,任芳国. 关于矩阵的表示及其在熵中应用[J]. 《山东大学学报(理学版)》, 2021, 56(11): 97-104. |
[6] | 刘静姝,王莉,刘惊雷. 基于循环矩阵投影的Nyström扩展[J]. 《山东大学学报(理学版)》, 2020, 55(7): 55-66. |
[7] | 王小刚,李冰. 基于核函数方法的逐段线性Tobit回归模型估计[J]. 《山东大学学报(理学版)》, 2020, 55(6): 1-9. |
[8] | 董哲瑾,王健,钱凌飞,林鸿飞. 一种用户成长性画像的建模方法[J]. 《山东大学学报(理学版)》, 2019, 54(3): 38-45. |
[9] | 董兴林,齐欣. 基于时滞效应的青岛市两阶段科技投入与产出互动关系[J]. 山东大学学报(理学版), 2018, 53(5): 80-87. |
[10] | 邹绍辉,张甜. 国际碳期货价格与国内碳价动态关系[J]. 山东大学学报(理学版), 2018, 53(5): 70-79. |
[11] | 彭家寅. 以真五粒子非最大纠缠态为信道的双向受控隐形传态[J]. 《山东大学学报(理学版)》, 2018, 53(12): 105-113. |
[12] | 李永明,聂彩玲,刘超,郭建华. 负超可加阵列下非参数回归函数估计的相合性[J]. 《山东大学学报(理学版)》, 2018, 53(12): 69-74. |
[13] | 陈敬,李寿山,周国栋. 基于双通道LSTM的用户年龄识别方法[J]. 山东大学学报(理学版), 2017, 52(7): 91-96. |
[14] | 陈霞,陈纯荣. 广义向量变分不等式的间隙函数与误差界[J]. 山东大学学报(理学版), 2017, 52(4): 1-5. |
[15] | 罗高骏,周良,左可正. 广义投影算子和超广义投影算子的一些新刻画[J]. 山东大学学报(理学版), 2016, 51(4): 43-48. |
|