山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (03): 73-79.doi: 10.6040/j.issn.1671-9352.0.2014.140
郑春华1, 刘文斌2
ZHENG Chun-hua1, LIU Wen-bin2
摘要: 研究了一类具有时滞的分数阶微分方程两点边值问题解的存在性,利用一个锥上的不动点定理和一些分析技巧获得了该边值问题正解存在的充分条件,补充和完善了一些已有的结果。
中图分类号:
[1] MILLER K S, ROSS B. An introduction to the fractional calculus and fractional differential equations[M]. New York: Wiley, 1993. [2] PODLUBNY I. Fractional differential equation[M]. San Diego: Academic Press, 1999. [3] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations[M]. Netherlands: Elsevier B V, 2006. [4] BAI Zhanbing, LÜ Haishen. Positive solutions of boundary value problems of nonlinear fractional differential equation[J]. J Math Anal Appl, 2005, 311:495-505. [5] ZHANG Shuqin. Positive solutions for boundary value problems of nonlinear fractional differential equations [J]. Electr J Differential Equations, 2006(36):1-12. [6] ZHAO Yige, SUN Shurong, HAN Zhenlai. Positive solutions for boundary value problems of nonlinear fractional differential equations[J]. Applied Mathematics and Computation, 2011, 217(16):6950-6958. [7] ZHANG Yinghan, BAI Zhanbing. Existence of solutions for nonlinear fractional three-point boundary value problems at resonance[J]. J Appl Math Comput, 2011, 36(1/2):417-440. [8] BAI Zhanbing. Solvability for a class of fractional m-point boundary value problem at resonance[J]. Computers & Mathematics with Applications, 2011,62 (3):1292-1302. [9] CHEN Taiyong, LIU Wenbin, HU Zhigang. A boundary value problem for fractional differential equation with p-Laplacian operator at resonance[J]. Nonlinear Anal, 2012,75(6):3210-3217. [10] JIANG Weihua. Eigenvalue interval for multi-point boundary value problems of fractional differential equations[J]. J Appl Math Comput, 2013, 219(9):4570-4575. [11] LI Xiaoyan, LIU Song, JIANG Wei. Positive solutions for boundary value problem of nonlinear fractional functional differential equations[J]. Applied Mathematics and Computation, 2011, 217(22):9278-9285. [12] ZHAO Yulin, CHEN Haibo, HUANG Li. Existence of positive solutions for nonlinear fractional functional differential equation[J].Computers & Mathematics with Applications, 2012, 64(10):3456-3467. [13] 葛渭高. 非线性常微分方程边值问题[M].北京:科学出版社,2007. |
[1] | 陈雨佳, 杨和. 一类三阶时滞微分方程在Banach空间中的周期解的存在性[J]. 山东大学学报(理学版), 2018, 53(8): 84-94. |
[2] | 曹雪靓,雒志学. 污染环境下森林发展系统的最优控制[J]. 山东大学学报(理学版), 2018, 53(7): 15-20. |
[3] | 申柳肖,赵春. 基于尺度结构的竞争种群系统的最优输入率控制[J]. 山东大学学报(理学版), 2018, 53(7): 21-29. |
[4] | 董兴林,齐欣. 基于时滞效应的青岛市两阶段科技投入与产出互动关系[J]. 山东大学学报(理学版), 2018, 53(5): 80-87. |
[5] | 陈丽,林玲. 具有时滞效应的股票期权定价[J]. 山东大学学报(理学版), 2018, 53(4): 36-41. |
[6] | 张道祥,孙光讯,马媛,陈金琼,周文. 带有Holling-III功能反应和线性收获效应的时滞扩散捕食者-食饵系统Hopf分支和空间斑图[J]. 山东大学学报(理学版), 2018, 53(4): 85-94. |
[7] | 李涛涛. 二阶半正椭圆微分方程径向正解的存在性[J]. 山东大学学报(理学版), 2017, 52(4): 48-55. |
[8] | 高荣,张焕水. 离散时间多输入时滞随机系统的镇定性[J]. 山东大学学报(理学版), 2017, 52(4): 105-110. |
[9] | 张莎,贾梅,李燕,李晓晨. 分数阶脉冲微分方程三点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 66-72. |
[10] | 张迪,刘文斌. 带p(t)-Laplacian算子的分数阶微分方程共振无穷多点边值问题解的存在性[J]. 山东大学学报(理学版), 2017, 52(12): 72-80. |
[11] | 冯海星,翟成波. 高阶非线性分数阶微分方程系统的多个正解[J]. 山东大学学报(理学版), 2017, 52(12): 48-57. |
[12] | 鞠培军,王伟. 多输入多输出线性系统的时滞界问题[J]. 山东大学学报(理学版), 2017, 52(11): 60-64. |
[13] | 荣文萍,崔静. 非Lipschitz条件下一类随机发展方程的μ-概几乎自守解[J]. 山东大学学报(理学版), 2017, 52(10): 64-71. |
[14] | 王亚军,张申,胡青松,刘峰,张玉婷. 具有测量噪声的时滞多智能体系统的一致性问题[J]. 山东大学学报(理学版), 2017, 52(1): 74-80. |
[15] | 王双明. 一类具有时滞的周期流行病模型的动力学分析[J]. 山东大学学报(理学版), 2017, 52(1): 81-87. |
|