山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (1): 102-110.doi: 10.6040/j.issn.1671-9352.0.2016.126
• • 上一篇
邓小芹,吴群英*
DENG Xiao-qin, WU Qun-ying*
摘要: 设{Xn; n≥1}是具有零均值、有限方差的严平稳负相关(negatively associated, NA)随机变量序列,在适当的条件下,得到了NA序列下部分和以及部分和最大值在对数律下的完全矩收敛精确渐近性的一般函数式,扩大了应用范围。
中图分类号:
[1] HSU P L, ROBBINS H. Complete convergence and the law of large numbers[J]. Proceedings of the National Academy of Sciences of the United States of America, 1947, 33(2):25-31. [2] JIANG Ye, ZHANG Lixin, PANG Tianxiao. Precise rates in the law of logarithm for the moment convergence of i.i.d. random variables[J]. Journal of Mathematical Analysis and Applications, 2007, 327(1):695-714. [3] XIAO Xiaoyong, YIN Hongwei. Precise asymptotics in the law of iterated logarithm for the first moment convergence of i.i.d. random variables[J]. Statistics & Probability Letters, 2012, 82(8):1590-1596. [4] JOAG-DEV K, PROSCHAN F. Negative association of random variables with applications[J]. Ann Statist, 1983, 11:286-295. [5] 吴群英. 混合序列的概率极限理论[M].北京:科学出版社,2006. WU Qunying. Probability limit theorems of maxing sequences[M]. Beijing: China Science Press, 2006. [6] CAO Yusong. Precise asymptotic in the complete moment convergence of NA sequence[J]. Chinese Journal of Applied Probability and Statistics, 2013, 29(2):188-200. [7] ZHAO Yuexu. Asymptotic properties of the moment convergence for NA sequences[J]. Acta Mathematica Scientia, 2014, 34(2):301-312. [8] FU Keang, YANG Xiaorong. Moment convergence rates in the law of the logarithm for dependent sequences[J]. Proceedings-Mathematical Sciences, 2009, 119(3):387-400. [9] SU Chun, ZHAO Lincheng, WANG Yuebao. Moment inequalities and weak convergence for negatively associated sequences[J]. Science in China Series A: Mathematics, 1997, 40(2):172-182. [10] BILLINGSLEY P. Convergence of probability measures[M]. New York: John Wiley & Sons, 2013. [11] SHAO Qiman. A comparison theorem on moment inequalities between negatively associated and independent random variables[J]. Journal of Theoretical Probability, 2000, 13(2):343-356. |
[1] | 张亚运,吴群英. ρ-混合序列的重对数律矩收敛的精确渐近性[J]. 山东大学学报(理学版), 2017, 52(4): 13-20. |
[2] | 张玉,肖犇琼,许可,沈爱婷. NSD随机变量阵列的完全矩收敛性[J]. 山东大学学报(理学版), 2016, 51(6): 30-36. |
[3] | 钱硕歌, 杨文志. END随机变量移动平均过程的完全矩收敛性[J]. 山东大学学报(理学版), 2015, 50(06): 13-18. |
[4] | 郑璐璐, 葛梅梅, 刘艳芳, 王学军. φ混合序列的完全矩收敛性[J]. 山东大学学报(理学版), 2015, 50(04): 14-19. |
[5] | 冯志伟. 阵列的单对数极限律[J]. 山东大学学报(理学版), 2014, 49(07): 75-79. |
[6] | 管总平,孙友彬. 随机变量阵列的强收敛性[J]. J4, 2009, 44(12): 56-59. |
[7] | 宇世航 . 同分布NA序列部分和之和的强大数定律[J]. J4, 2008, 43(4): 62-66 . |
|