您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (1): 102-110.doi: 10.6040/j.issn.1671-9352.0.2016.126

• • 上一篇    

NA序列完全矩收敛的精确渐近性

邓小芹,吴群英*   

  1. 桂林理工大学理学院, 广西 桂林 541004
  • 收稿日期:2016-03-24 出版日期:2017-01-20 发布日期:2017-01-16
  • 通讯作者: 吴群英(1961— ),女,博士,教授,研究方向为概率极限理论. E-mail:wqy666@glut.edu.cn E-mail:1084979551@qq.com
  • 作者简介:邓小芹(1989— ),女,硕士研究生,研究方向为概率极限理论. E-mail:1084979551@qq.com
  • 基金资助:
    国家自然科学基金资助项目(11361019,11661029);广西自然科学基金资助项目(2015GXNSFAA139008)

Precise asymptotics in the complete moment convergence for NA random variables

DENG Xiao-qin, WU Qun-ying*   

  1. College of Science, Guilin University of Technology, Guilin 541004, Guangxi, China
  • Received:2016-03-24 Online:2017-01-20 Published:2017-01-16

摘要: {Xn; n≥1}是具有零均值、有限方差的严平稳负相关(negatively associated, NA)随机变量序列,在适当的条件下,得到了NA序列下部分和以及部分和最大值在对数律下的完全矩收敛精确渐近性的一般函数式,扩大了应用范围。

关键词: 对数律, 精确渐近性, 完全矩收敛, NA序列

Abstract: Let {Xn; n≥1} be a strictly stationary sequence of negatively associated random variables with mean zero and finite variance. We obtain general functions for the precise asymptotics of the logarithm law in the complete moment convergence, which about partial sums and the maximum of partial sums under suitable conditions for NA random sequences, and expand the application range.

Key words: complete moment convergence, NA sequence, precise asymptotics, the logarithm law

中图分类号: 

  • O211.4
[1] HSU P L, ROBBINS H. Complete convergence and the law of large numbers[J]. Proceedings of the National Academy of Sciences of the United States of America, 1947, 33(2):25-31.
[2] JIANG Ye, ZHANG Lixin, PANG Tianxiao. Precise rates in the law of logarithm for the moment convergence of i.i.d. random variables[J]. Journal of Mathematical Analysis and Applications, 2007, 327(1):695-714.
[3] XIAO Xiaoyong, YIN Hongwei. Precise asymptotics in the law of iterated logarithm for the first moment convergence of i.i.d. random variables[J]. Statistics & Probability Letters, 2012, 82(8):1590-1596.
[4] JOAG-DEV K, PROSCHAN F. Negative association of random variables with applications[J]. Ann Statist, 1983, 11:286-295.
[5] 吴群英. 混合序列的概率极限理论[M].北京:科学出版社,2006. WU Qunying. Probability limit theorems of maxing sequences[M]. Beijing: China Science Press, 2006.
[6] CAO Yusong. Precise asymptotic in the complete moment convergence of NA sequence[J]. Chinese Journal of Applied Probability and Statistics, 2013, 29(2):188-200.
[7] ZHAO Yuexu. Asymptotic properties of the moment convergence for NA sequences[J]. Acta Mathematica Scientia, 2014, 34(2):301-312.
[8] FU Keang, YANG Xiaorong. Moment convergence rates in the law of the logarithm for dependent sequences[J]. Proceedings-Mathematical Sciences, 2009, 119(3):387-400.
[9] SU Chun, ZHAO Lincheng, WANG Yuebao. Moment inequalities and weak convergence for negatively associated sequences[J]. Science in China Series A: Mathematics, 1997, 40(2):172-182.
[10] BILLINGSLEY P. Convergence of probability measures[M]. New York: John Wiley & Sons, 2013.
[11] SHAO Qiman. A comparison theorem on moment inequalities between negatively associated and independent random variables[J]. Journal of Theoretical Probability, 2000, 13(2):343-356.
[1] 张亚运,吴群英. ρ-混合序列的重对数律矩收敛的精确渐近性[J]. 山东大学学报(理学版), 2017, 52(4): 13-20.
[2] 张玉,肖犇琼,许可,沈爱婷. NSD随机变量阵列的完全矩收敛性[J]. 山东大学学报(理学版), 2016, 51(6): 30-36.
[3] 钱硕歌, 杨文志. END随机变量移动平均过程的完全矩收敛性[J]. 山东大学学报(理学版), 2015, 50(06): 13-18.
[4] 郑璐璐, 葛梅梅, 刘艳芳, 王学军. φ混合序列的完全矩收敛性[J]. 山东大学学报(理学版), 2015, 50(04): 14-19.
[5] 冯志伟. 阵列的单对数极限律[J]. 山东大学学报(理学版), 2014, 49(07): 75-79.
[6] 管总平,孙友彬. 随机变量阵列的强收敛性[J]. J4, 2009, 44(12): 56-59.
[7] 宇世航 . 同分布NA序列部分和之和的强大数定律[J]. J4, 2008, 43(4): 62-66 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!