《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (4): 6-16.doi: 10.6040/j.issn.1671-9352.0.2018.194
方小珍,孙爱文,王敏,束立生
FANG Xiao-zhen, SUN Ai-wen, WANG Min, SHU Li-sheng
摘要: 研究多线性Littlewood-Paley算子在变指数函数空间上的有界性。基于一般的Littlewood-Paley算子gφ在Lp空间上的有界性,利用Sharp极大算子在变指数Lebesgue空间Lp(·)上的有界性,得到了多线性Littlewood-Paley算子在变指数Lebesgue空间以及变指数Herz-Morrey空间上是有界的。
中图分类号:
[1] COHEN J, GOSSELIN J. On multilinear singular integrals on Rn[J]. Publiccations Matematiques, 1982, 46(2):229-274. [2] 林燕. 多线性算子的有界性[J]. 数学物理学报, 2008, 28(4):595-602. LIN Yan. Boundedness of multilinear operators[J]. Acta Math Sci, 2008, 28(4):595-602. [3] 韩海燕, 陆善镇. 粗糙核分数次积分算子的多线性算子在Hardy空间上的有界性[J]. 数学物理学报, 2008, 28(1):1-11. HAN Haiyan, LU Shanzhen. Boundedness of multilinear operators related to fractional integral with rough kernel on Hardy spaces[J]. Acta Math Sci, 2008, 28(1):1-11. [4] LIU Lanzhe. Weighted boundedness of multilinear operators for the extreme cases[J]. Taiwanese J Math, 2006, 10(3):669-690. [5] LIU Lanzhe. Weighted endpoint extimates for multilinear Littlewood-Paley operators[J]. Acta Math Univ Comenianae, 2004, 144(1):72-75. [6] 汪顶玉, 束立生. Herz-Morrey空间上多线性Littlewood-Paley算子的有界性[J]. 系统科学与数学, 2010, 30(5):650-658. WANG Dingyu, SHU Lisheng. Boundedness of multilinear Littlewood-Paley operators on Herz-Morrey spaces[J]. J Systems Math Sci, 2010, 30(5):650-658. [7] ORLICZ W. Über konjugierte exponentenfolgen[J]. Studia Mathematica, 1931, 3(1):200-211. [8] ONDREJ K, JIRÍ R. On spaces Lp(x) and W k,p(x)[J]. Czechoslovak Math J, 1991, 41(4):592-618. [9] LARS D. Maximal function on generalized Lebesgue spaces Lp(·)[J]. Mathematical Inequalities and Applications, 2004, 7(2/3):339-351. [10] IIUKI M, NAKAI E, YOSHIHIRO S. Function space with variable exponents-an introduction[J]. Sci Math Jpn, 2014, 77(1):187-315. [11] MITSUO I. Boundedness of vactor-valued sublinear operators on Herz-Morrey spaces with variable exponent[J]. Math Sci Res J, 2009, 13(10):243-253. [12] 董楠楠, 赵凯. 内蕴平方函数在加权变指数Herz-Morrey空间上的有界性[J]. 云南大学学报(自然科学版), 2017, 39(6):924-929. DONG Nannan, ZHAO Kai. Boundedness of intrinsic square functions on weighted Herz-Morrey spaces with variable exponent[J]. Journal of Yunnan University(Natural Sciences), 2017, 39(6):924-929. [13] 姚俊卿, 赵凯. 变指数Herz-Morrey空间上的分数次积分交换子[J]. 山东大学学报(理学版), 2017, 52(11):100-105. YAO Junqing, ZHAO Kai. Commutators of fractional integrals on Herz-Morrey spaces with variable exponent[J]. Journal of Shandong University(Natural Science), 2017, 52(11):100-105. [14] STEIN Elias M. Harmonic analysis: real variable methods, orthogonality and oscillatory integrals[M]. Princeton: Princeton Univ Press, 2006. [15] JONATHAN C, JOHN G. A BMO estimate for multilinear singular integral operators[J]. Illinois J Math, 1986, 30(1986):445-465. [16] LARS D. Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces[J]. Bull Sci Math, 2005, 129(8):657-700. [17] SUBBASH C. A note on commutators[J]. Indiana Univ Math J, 1982, 31(1):7-16. [18] MITSUO I. Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization[J]. Anal Math, 2010, 36(1):33-50. [19] MITSUO I. Boundedness of commutators on Herz spaces with variable exponent[J]. Rend del Circolo Mate di Palermo, 2010, 59(2):199-213. |
[1] | 马小洁,赵凯. 分数次Hardy算子交换子在变指数空间的加权有界性[J]. 山东大学学报(理学版), 2017, 52(11): 106-110. |
|