您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (6): 75-80.doi: 10.6040/j.issn.1671-9352.0.2018.496

• • 上一篇    

带有Hardy项的奇异p-重调和方程正解的唯一性

桑彦彬,陈娟,任艳   

  1. 中北大学理学院数学系, 山西 太原 030051
  • 发布日期:2019-06-05
  • 作者简介:桑彦彬(1979— ),男,博士,副教授,研究方向为非线性微分方程. E-mail:sangyanbin@126.com
  • 基金资助:
    山西省自然科学基金资助项目(201601D011003)

Uniqueness of positive solutions of singular p-biharmonic equations with Hardy terms

  1. School of Science, North University of China, Taiyuan 030051, Shanxi, China
  • Published:2019-06-05

摘要: 研究了一类带有Hardy项的奇异p-重调和方程,运用极小化方法获得了该问题正解的存在唯一性。

关键词: Hardy项, 奇异p-重调和方程, 极小化方法, 正解, 存在唯一性

Abstract: We study a class of singular p-biharmonic equations with Hardy terms. The existence and uniqueness of the positive solution for above problem is obtained by minimization method.

Key words: Hardy terms, singular p-biharmonic equations, minimization method, positive solution, existence and uniqueness

中图分类号: 

  • O175.25
[1] PERERA K, SILVA E A B. Existence and multiplicity of positive solutions for singular quasilinear problems[J]. Journal of Mathematical Analysis and Applications, 2006, 323(2):1238-1252.
[2] ZHAO L, HE Y, ZHAO P. The existence of three positive solutions of a singular p-Laplacian problem[J]. Nonlinear Analysis, 2011, 74(16):5745-5753.
[3] BUENO H, PAES-LEME L, RODRIGUES H C. Multiplicity of solutions for p-biharmonic problems with critical growth[J]. Rocky Mountain J Math, 2018, 48:425-442.
[4] CHEN Q, CHEN C. Infinitely many solutions for a class of p-biharmonic equation in RN[J]. Bull Iranian Math Soc, 2017, 43(1):205-215.
[5] 廖家锋, 陈明, 张鹏. 一类奇异共振椭圆方程正解的唯一性[J]. 数学杂志, 2017, 37(3):513-518. LIAO Jiafeng, CHEN Ming, ZHANG Peng. Uniqueness of positive solutions for a class of singular resonance elliptic equations[J]. Journal of Mathematics, 2017, 37(3):513-518.
[6] 廖家锋, 李红英, 段誉. 一类奇异p-Laplacian方程正解的唯一性[J]. 西南大学学报(自然科学版), 2016, 38(6):45-49. LIAO Jiafeng, LI Hongying, DUAN Yu. Uniqueness of positive solutions for a class of singular p-Laplacian equations[J]. Journal of Southwest University(Natural Science Edition), 2016, 38(6):45-49.
[7] 李红英, 佘连兵, 廖家锋. 一类奇异p-Laplace方程正解的存在性[J]. 西北师范大学学报(自然科学版), 2016, 52(4):1-4. LI Hongying, SHE Lianbing, LIAO Jiafeng. Uniqueness of positive solutions for a class of singular p-Laplace equations[J]. Journal of Northwest Normal University(Natural Science Edition), 2016, 52(4):1-4.
[8] 唐榆婷, 唐春雷. 一类带Hardy-Sobolev临界指数的Kirchhoff方程正解的存在性[J]. 西南大学学报(自然科学版), 2017, 39(6):81-86. TANG Yuting, TANG Chunlei. Existence of positive solutions for a class of Kirchhoff equations with Hardy-Sobolev critical exponents[J]. Journal of Southwest University(Natural Science Edition), 2017, 39(6):81-86.
[9] YANG Ruirui, ZHANG Wei, LIU Xiangqing. Sign-changing solutions for p-biharmonic equations with Hardy potential in RN[J]. Acta Mathematica Scientia, 2017, 37B(3):593-606.
[10] LIAO Jiafeng, KE Xiaofeng, LEI Chunyu, et al. A uniqueness result for Kirchhoff type problems with singularity[J]. Applied Mathematics Letters, 2016, 59:24-30.
[11] HUANG Yisheng, LIU Xiangqing. Sign-changing solutions for p-biharmonic equationswith Hardy potential[J]. Journal of Mathematical Analysis and Applications, 2014, 412(3):142-154.
[12] DAVIES E B, HINZ A M. Explicit constants for Rellich inequalities[J]. Mathematische Zeitschrift, 1998, 227(3):511-523.
[13] RUDIN W. Real and complex analysis[M]. New York: McGraw-Hill, 1986.
[14] BRÉZIS H, LIEB E. A relation between pointwise convergence of functions and convergence of functionals[J]. Proceedings of the American Mathematical Society, 1983, 88(3):486-490.
[15] SUN Y J, WU S, LONG Y. Combined effects of singular and superlinear nonlinearities in some singular boundary value problems[J]. Journal of Differential Equations, 2001, 176(2):511-531.
[16] VÁZQUEZ J L. A strong maximum principle for some quasilinear elliptic equations[J]. Applied Mathematics and Optimization, 1984, 12(1):191-202.
[17] LINDQVIST Peter. On the equation div(|∇u|p-2∇u)+λup-2u=0[J]. Proceedings of the American Mathematical Society, 1992, 116(2):583-584.
[1] 王素云,李永军. 带超越共振点非线性项的二阶常微分方程边值问题的可解性[J]. 山东大学学报(理学版), 2018, 53(6): 53-56.
[2] 王娇. 一类非线性二阶常微分方程 Dirichlet问题正解的存在性[J]. 山东大学学报(理学版), 2018, 53(6): 64-69.
[3] 肖新玲. 由马氏链驱动的正倒向随机微分方程[J]. 山东大学学报(理学版), 2018, 53(4): 46-54.
[4] 闫东亮. 带有导数项的二阶周期问题正解[J]. 山东大学学报(理学版), 2017, 52(9): 69-75.
[5] 李涛涛. 二阶半正椭圆微分方程径向正解的存在性[J]. 山东大学学报(理学版), 2017, 52(4): 48-55.
[6] 冯海星,翟成波. 高阶非线性分数阶微分方程系统的多个正解[J]. 山东大学学报(理学版), 2017, 52(12): 48-57.
[7] 郭丽君. 非线性微分方程三阶三点边值问题正解的存在性[J]. 山东大学学报(理学版), 2016, 51(12): 47-53.
[8] 王先飞, 江龙, 马娇娇. 具有Osgood型生成元的多维倒向重随机微分方程[J]. 山东大学学报(理学版), 2015, 50(08): 24-33.
[9] 杨文彬, 李艳玲. 一类具有非单调生长率的捕食-食饵系统的动力学[J]. 山东大学学报(理学版), 2015, 50(03): 80-87.
[10] 孙艳梅. 奇异分数阶微分方程边值问题正解的存在性[J]. 山东大学学报(理学版), 2014, 49(2): 71-75.
[11] 张露,马如云. 渐近线性二阶半正离散边值问题正解的分歧结构[J]. 山东大学学报(理学版), 2014, 49(03): 79-83.
[12] 秦小娜,贾梅*,刘帅. 具Caputo导数分数阶微分方程边值问题正解的存在性[J]. J4, 2013, 48(10): 62-67.
[13] 姚庆六. 奇异非自治三阶两点边值问题的正解存在性[J]. J4, 2012, 47(6): 10-15.
[14] 范进军,张雪玲,刘衍胜. 时间测度上带p-Laplace算子的m点边值问题正解的存在性[J]. J4, 2012, 47(6): 16-19.
[15] 卢芳,周宗福*. 一类具p-Laplacian算子四阶奇异边值问题正解的存在性[J]. J4, 2012, 47(6): 28-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!