《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (1): 23-32.doi: 10.6040/j.issn.1671-9352.0.2019.069
郑瑞瑞1,孙同军2*
ZHENG Rui-rui1, SUN Tong-jun2*
摘要: 讨论了一类具有一个捕食者和一个被捕食者的捕食模型的最优控制问题。利用最优控制理论,推导出对偶状态方程和最优性条件。采用分片线性连续函数对状态变量、对偶状态变量进行逼近,分片常数函数对控制变量进行逼近,建立了模型问题的有限元全离散格式。通过分析,推导得到状态变量、对偶状态变量和控制变量的先验误差估计。
中图分类号:
[1] LIONS J L. Optimal control of systems governed by partial differential equations[M]. Berlin: Springer-Verlag, 1971. [2] LIU Wenbin, YAN Ningning. Adaptive finite element method for optimal control governed by PDEs[M]. Beijing: Science Press, 2008. [3] FU Hongfei, RUI Hongxing. A prior error for optimal control problem governed by transient advection-diffusion equations[J]. J Sci Comput, 2009, 38:290-315. [4] FU Hongfei, RUI Hongxing. A characteristic-mixed finite element method for time-dependent convection-diffusion optimal control problem[J]. Appl Math Comput, 2011, 218:3430-3440. [5] SUN Tongjun. Discontinuous Galerkin finite element method with interior penalties for convection diffusion optimal control problem[J]. Int J Numer Anal Model, 2010, 7(1):87-107. [6] SUN Tongjun, GE Liang, LIU Wenbin. Equivalent a posteriori error estimates for a constrained optimal control problem governed by parabolic equations[J]. Int J Numer Anal Model, 2013, 10(1):1-23. [7] SUN Tongjun, SHEN Wanfang, GONG Benxue, et al. A priori error estimate of stochastic Galerkin method for optimal control problem governed by stochastic elliptic PDE with constrained control[J]. J Sci Comput, 2016, 67(2):405-431. [8] DAWES J H P, SOUZA M O. A derivation of Hollings type Ⅰ,Ⅱ and Ⅲ functional responses in predator-prey systems[J]. J Theor Biol, 2013, 327:11-22. [9] APREUTESEI N C. An optimal control problem for a prey-predator system with a general functional response[J]. Appl Math Lett, 2009, 22:1062-1065. [10] ZHANG Lei, LIU Bin. Optimal control problem for an ecosystem with two competing preys and one predator[J]. J Math Anal Appl, 2015, 424:201-220. [11] APREUTESEI N C, DIMITRIU G. On a prey-predator reaction-diffusion system with Holling type III functional response[J]. J Comput Appl Math, 2010, 235:366-379. [12] GARVIE M R, TRENCHEA C. Optimal control of a Nutrient-Phytoplankton-Zooplankon-Fish system[J]. SIAM J Control Optim, 2007, 46(3):775-791. [13] APREUTESEI N C. Necessary optimality conditions for a Lotka-Volterra three species system[J]. Math Model Nat Phenom, 2006,1(1):120-13. [14] APREUTESEI N C, DIMITRIU G, STRUGARIU R. An optimal control problem for a two-prey and one-predator model with diffusion[J]. Comput Math Appl, 2014, 67:2127-2143. [15] CIARLET P G. The finite element method for elliptic problems[M]. Philadelphia: SIAM, 2002. [16] LIU Wenbin, YAN Ningning. A posteriori error estimates for control problems governed by Stocks equations[J]. SIAM J Numer Anal, 2002, 40:1850-1869. [17] THOMÉE V. Galerkin finite element methods for parabolic problems[M]. Berlin: Springer, Springer Series in Computational Mathematics, 1997. [18] WHEELER M F. A priori L2 error estimates for Galerkin approximations to parabolic partial differential equations[J]. SIAM J Numer Anal, 1973, 10:723-759. |
[1] | 刘兵兵,郝庆一. 一类悲观二层规划问题的一阶必要最优性条件[J]. 山东大学学报(理学版), 2016, 51(3): 44-50. |
[2] | 余丽. 集值映射的ε-强次微分及应用[J]. J4, 2013, 48(3): 99-105. |
[3] | 宿 洁, . 值型线性双层规划的共轭对偶及最优性条件[J]. J4, 2007, 42(10): 13-17 . |
[4] | 陈莉, . 非方离散广义系统的奇异LQ问题及最优代价单调性[J]. J4, 2006, 41(5): 80-83 . |
|