您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (1): 33-40.doi: 10.6040/j.issn.1671-9352.4.2019.121

• • 上一篇    下一篇

广义Pythagorean模糊软集的代数结构

张海东1,2*,加华多杰2,贺艳平3   

  1. 西北民族大学 1.中国民族语言文字信息技术教育部重点实验室;2.数学与计算机科学学院;3.电气工程学院, 甘肃 兰州 730030
  • 发布日期:2020-01-10
  • 作者简介:张海东(1980— ), 男, 博士, 副教授, 研究方向为不确定性理论及其应用. E-mail:lingdianstar@163.com*通信作者
  • 基金资助:
    国家自然科学基金资助项目(61966032);甘肃省高等学校科研项目(2016B-005);西北民族大学中央高校基本科研业务费专项资金项目(31920190055);西北民族大学甘肃省一流学科引导专项资金资助项目(11080305);西北民族大学中央高校基本科研业务费专项资金资助研究生项目(Yxm2019110)

Algebraic structures of generalized Pythagorean fuzzy soft set

ZHANG Hai-dong1,2*, Jia-hua Duojie2, HE Yan-ping3   

  1. Northwest Minzu University 1. Key Laboratory of Chinas Ethnic Languages and Information Technology of Ministry of Education;
    2. School of Mathematics and Computer Science;
    3. School of Electrical Engineering, Lanzhou 730030, Gansu, China
  • Published:2020-01-10

摘要: 拓展Pythagorean模糊软集理论, 引进一种广义Pythagorean模糊软集的概念。为了给广义Pythagorean模糊软集建立理论基础, 给出该模型的一些运算算子, 并讨论其格结构。首先建立了3种广义Pythagorean模糊软集的格结构,然后证明了3种格结构是软代数结构,最后确立了3种有补分配格, 即布尔格。

关键词: 广义Pythagorean模糊软集, 算子, 软代数, 布尔格

Abstract: The Pythagorean fuzzy soft set theory is generalized and the concept of the generalized Pythagorean fuzzy soft set is introduced. In order to establish the theoretical basis for the generalized Pythagorean fuzzy soft set, we define some operation operators of the model, and discuss its lattice structures. First, three lattice structures of the generalized Pythagorean fuzzy soft set are constructed. Then it is also proved that the three lattice structures are soft algebraic structures. Finally, we explore three complemented distributive lattices which are also called Boolean lattices.

Key words: generalized Pythagorean fuzzy soft set, operator, soft algebra, Boolean lattice

中图分类号: 

  • O153.1
[1] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353.
[2] ATANASSOV K. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1):87-96.
[3] TURKSEN I B. Interval valued fuzzy sets based on normal forms[J]. Fuzzy Sets and Systems, 1986, 20(2):191-210.
[4] MOLODTSOV D A. Soft set theory-first results[J]. Computers and Mathematics with Applications, 1999, 37(4):19-31.
[5] MAJI P K, BISWAS R, ROY A R. Soft set theory[J]. Computers and Mathematics with Applications, 2003, 45:555-562.
[6] ALI M I, FENG F, LIU X Y,et al. On some new operations in soft set theory[J]. Computers and Mathematics with Applications, 2009, 57:1547-1553.
[7] QIN Keyun, HONG Zhiyong. On soft equality[J]. Journal of Computational and Applied Mathematics, 2010, 234:1347-1355.
[8] BABITHA K V, SUNIL J J. Transitive closures and orderings on soft sets[J]. Computers and Mathematics with Applications, 2011, 62:2235-2239.
[9] JUN Y B. Soft BCK/BCI-algebras[J]. Computers and Mathematics with Applications, 2008, 56(5):1408-1413.
[10] MAJI P K, BISWAS R, ROY A R. Fuzzy soft set[J]. Journal of Fuzzy Mathematics, 2001, 9(3):589-602.
[11] MAJUMDAR P, SAMANTA S K. Generalized fuzzy soft sets[J]. Computers and Mathematics with Applications, 2010, 59(4):1425-1432.
[12] MAJI P K, BISWAS R, ROY A R. Intuitionistic fuzzy soft set[J]. Journal of Fuzzy Mathematics, 2001, 9(3):677-692.
[13] GARG H, ARORA R. Generalized and group-based generalized intuitionistic fuzzy soft sets with applications in decision-making[J]. Applied Intelligence, 2018, 48(2):343-356.
[14] YANG X B, LIN T Y, YANG J Y, et al. Combination of interval-valued fuzzy set and soft set[J]. Computers and Mathematics with Applications, 2009, 58(3):521-527.
[15] ZHANG Haidong, XIONG Lianglin, MA Weiyuan. On interval-valued hesitant fuzzy soft sets[J]. Mathematical Problems in Engineering, 2015, 2015(3):1-17.
[16] ZHANG Haidong, SHU Lan. Dual hesitant fuzzy soft set and its properties[J]. Fuzzy Systems & Operations Research and Management, 2016, 367:171-182.
[17] JIANG Yuncheng, LIU Hai, TANG Yong, et al. Semantic decision making using ontology-based soft sets[J]. Mathematical and Computer Modelling, 2011, 53:1140-1149.
[18] HU Junhua, PAN Li, YANG Yan, et al. A group medical diagnosis model based on intuitionistic fuzzy soft sets[J]. Applied Soft Computing Journal, 2019, 77:453-466.
[19] QIN Keyun, ZHAO Hua. Lattice structures of fuzzy soft set[J]. Lecture Notes in Computer Science, 2010, 6215:126-133.
[20] 郭智莲, 杨海龙. 区间值模糊软集的格结构[J]. 计算机工程与应用, 2011, 47(33):7-9. GUO Zhilian, YANG Hailong. Lattice structures of interval-valued fuzzy soft sets[J]. Computer Engineering and Applications, 2011, 47(33):7-9.
[21] 周小强, 李庆国. 广义直觉模糊软集的格结构[J]. 湖南大学学报(自然科学版), 2014, 41(3):113-116. ZHOU Xiaoqiang, LI Qingguo. Lattice structure of generalized intuitionistic fuzzy soft sets[J]. Journal of Hunan University(Natural Science), 2014, 41(3):113-116.
[22] YAGER R R. Pythagorean membership grades in multi-criteria decision making[J]. IEEE Transaction on Fuzzy Systems, 2014, 22(4):958-965.
[23] 彭新东,杨勇,宋娟萍,等.毕达哥拉斯模糊软集及其应用[J].计算机工程,2015,41(7):224-229. PENG Xindong, YANG Yong, SONG Juanping, et al. Pythagorean fuzzy soft set and its application[J]. Computer Engineering, 2015, 41(7):224-229.
[24] JIA-HUA Duojie, ZHANG Haidong, HE Yanping. Possibility Pythagorean fuzzy soft set and its application[J]. Journal of Intelligent & Fuzzy Systems, 2019, 36(1):413-421.
[25] ZHANG Xiaolu, XU Zeshui. Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets[J]. International Journal of Intelligent Systems, 2014, 29(12):1061-1078.
[26] 张振琳. 离散数学[M]. 沈阳: 辽宁科学技术出版社, 2012: 112-118. ZHANG Zhenlin. Discrete mathematics [M]. Shenyang: Liaoning Science and Technology Press, 2012: 112-118.
[1] 张伟,付艳玲. Hilbert空间中连续广义框架的分解[J]. 《山东大学学报(理学版)》, 2019, 54(8): 76-80.
[2] 戴磊,黄小静,郭奇. 1)性质与单值扩张性质[J]. 《山东大学学报(理学版)》, 2019, 54(8): 55-61.
[3] 陶双平,杨雨荷. 分数次极大算子及交换子在λ-中心Morrey空间上的加权估计[J]. 《山东大学学报(理学版)》, 2019, 54(8): 68-75.
[4] 张倩,李萱,李歆,郑慧慧,李林涵,张良云. 由Sweedler四维Hopf代数构造Rota-Baxter代数[J]. 《山东大学学报(理学版)》, 2019, 54(6): 47-52.
[5] 王涛. Gauss-Weierstrass算子的逼近性质研究[J]. 《山东大学学报(理学版)》, 2019, 54(6): 96-98.
[6] 方小珍,孙爱文,王敏,束立生. 广义多线性算子在变指数空间上的有界性[J]. 《山东大学学报(理学版)》, 2019, 54(4): 6-16.
[7] 张申贵. 变分方法对变指数脉冲微分系统的应用[J]. 《山东大学学报(理学版)》, 2019, 54(4): 22-28.
[8] 韩琦,殷世德,陈芷禾. 量子计算中旋转算子的相关性质[J]. 《山东大学学报(理学版)》, 2019, 54(2): 121-126.
[9] 熊兴国,路玲霞. 基于MV-代数的度量型模糊粗糙集[J]. 《山东大学学报(理学版)》, 2019, 54(11): 81-89.
[10] 周玉兰,李晓慧,程秀强,薛蕊. 连续时间Guichardet-Fock空间中的计数算子的表示[J]. 《山东大学学报(理学版)》, 2019, 54(11): 108-114.
[11] 姬杰. 一类脉冲Strum-Liouville算子的特征值渐近式和迹公式[J]. 《山东大学学报(理学版)》, 2019, 54(10): 49-56.
[12] 宋君秋,贾梅,刘锡平,李琳. p-Laplace算子分数阶非齐次边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 57-66.
[13] 陶双平,高荣. 多线性分数次积分和极大算子在Morrey空间上的加权估计[J]. 山东大学学报(理学版), 2018, 53(6): 30-37.
[14] 刘春辉. 可换BR0-代数在一般集合上的蕴涵表示形式[J]. 山东大学学报(理学版), 2018, 53(6): 86-94.
[15] 李春芳,孟彬. 测度框架的若干性质[J]. 《山东大学学报(理学版)》, 2018, 53(12): 99-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈宏宇1, 张丽2. 不含弦5-圈和弦6-圈的平面图的线性2荫度[J]. 山东大学学报(理学版), 2014, 49(06): 26 -30 .
[2] 叶晓鸣,陈兴蜀,杨力,王文贤,朱毅,邵国林,梁刚. 基于图演化事件的主机群异常检测模型[J]. 山东大学学报(理学版), 2018, 53(9): 1 -11 .
[3] 巫朝霞,王佳琪. 一种无线单频谱安全拍卖算法[J]. 《山东大学学报(理学版)》, 2018, 53(11): 51 -55 .
[4] 万鹏飞,高兴宝. 一种解多目标优化问题的基于分解的人工蜂群算法[J]. 山东大学学报 (理学版), 2018, 53(11): 56 -66 .
[5] 王鑫,左万利,朱枫彤,王英. 基于重要结点的社区发现算法[J]. 山东大学学报 (理学版), 2018, 53(11): 67 -77 .
[6] 王爱兰,宋巍涛,赵秀凤. 剩余类环上扩张因子的性质[J]. 山东大学学报 (理学版), 2018, 53(11): 78 -84 .
[7] 孔祥军,王蓓. 关于可乘拟恰当断面的好同余[J]. 《山东大学学报(理学版)》, 2018, 53(12): 1 -3 .
[8] 陈洪玲,王慧娟,高红伟. 可嵌入到欧拉示性数非负的曲面图的线性荫度[J]. 《山东大学学报(理学版)》, 2018, 53(12): 17 -22 .
[9] 李亦然,张荣华,李泽东,牛勇,张永涛. 基于Gash修正模型的元宝槭林分结构对降雨分配的影响[J]. 《山东大学学报(理学版)》, 2019, 54(1): 26 -35 .
[10] 张瑛,马雪松,敬如岩,马风云,郭建曜,王延平,王华田. 基于宏基因组测序技术分析连作对杨树人工林土壤微生物群落的影响[J]. 《山东大学学报(理学版)》, 2019, 54(1): 36 -46 .