您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (11): 108-114.doi: 10.6040/j.issn.1671-9352.0.2019.513

• • 上一篇    下一篇

连续时间Guichardet-Fock空间中的计数算子的表示

周玉兰,李晓慧,程秀强,薛蕊   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2019-11-06
  • 作者简介:周玉兰(1978— )女,博士,副教授,研究方向为随机分析. E-mail:zhouylw123@163.com
  • 基金资助:
    国家自然科学基金地区科学基金资助项目(11461061)

Representation of the number operator in continuous-time Guichardet-Fock space

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2019-11-06

摘要: 考虑了连续时间Guichardet-Fock空间L2(Γ;η)中计数算子N的表示问题。利用修正随机梯度SymbolQC@及非适应性Skorohod积分δ,给出N的梯度-积分表示:N=δSymbolQC@;其次,应用L2(Γ;η)中有界算子族{SymbolQC@*sSymbolQC@s;s∈R+}的算子积分,证明在弱意义下,N有有界算子族的Bocher积分表示:N=∫R+SymbolQC@*sSymbolQC@sds;同时,发现L2(Γ;η)的一列相互正交闭子空间L2(n);η)是N的特征子空间,从而给出N的谱表示:N=∑n=1nJn,其中Jn:L2(Γ;η)→L2(n);η)是正交投影。

关键词: 修正随机梯度SymbolQC@, 修正点态随机梯度SymbolQC@s, 修正点态随机梯度的共轭SymbolQC@*s, Skorohod积分δ, 计数算子N

Abstract: The paper considers the representation of the number operator N in continuous-time Guichardet-Fock space L2(Γ;η). Firstly, the gradient-Skorohod integral representation of N is given by using modified stochastic gradient SymbolQC@ and non-adaptive Skorohod integral δ:N=δSymbolQC@. Secondly, the representation of Bochner integral is given: N=∫R+SymbolQC@*sSymbolQC@sds in the sense of the inner product, by means of the family of isometric operator {SymbolQC@*sSymbolQC@s; s∈R+}. Meanwhile, the spectrum of N is just the nonnegative integral N, and for any n≥0, the closed subspace L2(n);η) of Guichardet-Fock space L2(Γ;η) is just the eigenspace corresponding to the eigenvalue n, and N has the spectrum representation: N=∑n=1nJn, where Jn:L2(Γ;η)→L2(n);η), is the orthogonal projection.

Key words: modified stochastic gradient SymbolQC@, point-state modified stochastic gradient SymbolQC@s, adjoint of the point state modified stochastic gradient SymbolQC@*s, Skorohod integral δ, number operator N

中图分类号: 

  • O211
[1] HUDSON R, PARTHASARATHE K R. Quantum Itôs formula and stochastic evolutions[J]. Communications in Mathematical Physics, 1984, 93(3):301-323.
[2] ASAO A. Dirac operators in Boson-Fermion Fock spaces and supersymmetric quantum field theory[J]. Journal of Geometry and Physics, 1993, 11(1/2/3/4):465-490.
[3] HUANG Zhiyuan. Quantum white noises-white noise approach to quantum stochastic calculus[J]. Nagoya Mathematical Journal, 1993, 129:23-42.
[4] 黄志远, 王才士, 让光林. 量子白噪声分析[M]. 武汉: 湖北科学出版社, 2004. HUANG Zhiyuan, WANG Caishi, RANG Guanglin. Quantum white noise analysis[M]. Wuhan: Hubei Science Press, 2004.
[5] OBATA N. White noise calculus and Fock space[M]. New York: Springer-Verlag, 1994.
[6] WANG Caishi, LU Yanchun, CHAI Huifang. An alternative approach to Privaults discrete-time chaotic calculus[J]. Journal of Mathematical Analysis and Applications, 2011, 373(2):643-654.
[7] WANG Caishi, CHAI Huifang, LU Yanchun. Discrete-time quantum bernoulli noises[J]. Journal of Applied Mathematics and Physics, 2010, 51(5):053528.
[8] WANG Caishi, CHEN Jinshu. Quantum Markov semigroups constructed form quantum bernoulli noises[J]. Journal of Mathematical Physics, 2016, 57(2):023502.
[9] WANG Caishi, CHEN Jinshu. Linear stochastic Schrödinger equations in terms of quantum bernoulli noises[J]. Journal of Mathematical Physics, 2017, 58(5):053510.
[10] ATTAL S, LINDSAY J M. Quantum stochastic calculus with maximal operator domains[J]. The Annals of Probability, 2004, 32(1):488-529.
[11] ZHANG Jihong, WANG Caishi, TIAN Lina. Localization of unbounded operators on Guichardet spaces[J]. Journal of Applied Mathematics and Physics, 2015, 3(7):792-796.
[12] 周玉兰, 李转. 连续时间Guichardet-Fock空间中修正随机梯度算子的性质[J]. 山东大学学报(理学版), 2018, 45(1):62-68. ZHOU Yulan, LI Zhuan. Properties of modified stochastic gradient operators in continuous-time Guichardet-Fock space[J]. Journal of Shandong University(Natural Science), 2018, 45(1):62-68.
[1] 陈昊君,郑莹,马明,边莉娜,刘华. 自激滤过泊松过程的协方差[J]. 《山东大学学报(理学版)》, 2018, 53(12): 75-79.
[2] 周玉兰,李转,李晓慧. 连续时间Guichardet-Fock空间中修正随机梯度算子的性质[J]. 《山东大学学报(理学版)》, 2018, 53(12): 62-68.
[3] 李永明,聂彩玲,刘超,郭建华. 负超可加阵列下非参数回归函数估计的相合性[J]. 《山东大学学报(理学版)》, 2018, 53(12): 69-74.
[4] 马明,边莉娜,刘华. 基于事件点联合分布的自激滤过泊松过程的低阶矩[J]. 山东大学学报(理学版), 2018, 53(4): 55-58.
[5] 肖新玲. 由马氏链驱动的正倒向随机微分方程[J]. 山东大学学报(理学版), 2018, 53(4): 46-54.
[6] 陈丽,林玲. 具有时滞效应的股票期权定价[J]. 山东大学学报(理学版), 2018, 53(4): 36-41.
[7] 张亚娟,吕艳. 带有变阻尼的随机振动方程的逼近[J]. 山东大学学报(理学版), 2018, 53(4): 59-65.
[8] 李小娟,高强. 次线性期望框架下乘积空间的正则性[J]. 山东大学学报(理学版), 2018, 53(4): 66-75.
[9] 崔静,梁秋菊. 分数布朗运动驱动的非局部随机积分微分系统的存在性与可控性[J]. 山东大学学报(理学版), 2017, 52(12): 81-88.
[10] 黄爱玲,林帅. 局部量子Bernoulli噪声意义下的随机Schrödinger方程的有限维逼近[J]. 山东大学学报(理学版), 2017, 52(12): 67-71.
[11] 荣文萍,崔静. 非Lipschitz条件下一类随机发展方程的μ-概几乎自守解[J]. 山东大学学报(理学版), 2017, 52(10): 64-71.
[12] 冯德成,张潇,周霖. 弱鞅的一类极小值不等式[J]. 山东大学学报(理学版), 2017, 52(8): 65-69.
[13] 张节松. 现代风险模型的扩散逼近与最优投资[J]. 山东大学学报(理学版), 2017, 52(5): 49-57.
[14] 杨叙,李硕. 白噪声和泊松随机测度驱动的倒向重随机微分方程的比较定理[J]. 山东大学学报(理学版), 2017, 52(4): 26-29.
[15] 张亚运,吴群英. ρ-混合序列的重对数律矩收敛的精确渐近性[J]. 山东大学学报(理学版), 2017, 52(4): 13-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!