《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (1): 33-40.doi: 10.6040/j.issn.1671-9352.4.2019.121
张海东1,2*,加华多杰2,贺艳平3
ZHANG Hai-dong1,2*, Jia-hua Duojie2, HE Yan-ping3
摘要: 拓展Pythagorean模糊软集理论, 引进一种广义Pythagorean模糊软集的概念。为了给广义Pythagorean模糊软集建立理论基础, 给出该模型的一些运算算子, 并讨论其格结构。首先建立了3种广义Pythagorean模糊软集的格结构,然后证明了3种格结构是软代数结构,最后确立了3种有补分配格, 即布尔格。
中图分类号:
[1] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353. [2] ATANASSOV K. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1):87-96. [3] TURKSEN I B. Interval valued fuzzy sets based on normal forms[J]. Fuzzy Sets and Systems, 1986, 20(2):191-210. [4] MOLODTSOV D A. Soft set theory-first results[J]. Computers and Mathematics with Applications, 1999, 37(4):19-31. [5] MAJI P K, BISWAS R, ROY A R. Soft set theory[J]. Computers and Mathematics with Applications, 2003, 45:555-562. [6] ALI M I, FENG F, LIU X Y,et al. On some new operations in soft set theory[J]. Computers and Mathematics with Applications, 2009, 57:1547-1553. [7] QIN Keyun, HONG Zhiyong. On soft equality[J]. Journal of Computational and Applied Mathematics, 2010, 234:1347-1355. [8] BABITHA K V, SUNIL J J. Transitive closures and orderings on soft sets[J]. Computers and Mathematics with Applications, 2011, 62:2235-2239. [9] JUN Y B. Soft BCK/BCI-algebras[J]. Computers and Mathematics with Applications, 2008, 56(5):1408-1413. [10] MAJI P K, BISWAS R, ROY A R. Fuzzy soft set[J]. Journal of Fuzzy Mathematics, 2001, 9(3):589-602. [11] MAJUMDAR P, SAMANTA S K. Generalized fuzzy soft sets[J]. Computers and Mathematics with Applications, 2010, 59(4):1425-1432. [12] MAJI P K, BISWAS R, ROY A R. Intuitionistic fuzzy soft set[J]. Journal of Fuzzy Mathematics, 2001, 9(3):677-692. [13] GARG H, ARORA R. Generalized and group-based generalized intuitionistic fuzzy soft sets with applications in decision-making[J]. Applied Intelligence, 2018, 48(2):343-356. [14] YANG X B, LIN T Y, YANG J Y, et al. Combination of interval-valued fuzzy set and soft set[J]. Computers and Mathematics with Applications, 2009, 58(3):521-527. [15] ZHANG Haidong, XIONG Lianglin, MA Weiyuan. On interval-valued hesitant fuzzy soft sets[J]. Mathematical Problems in Engineering, 2015, 2015(3):1-17. [16] ZHANG Haidong, SHU Lan. Dual hesitant fuzzy soft set and its properties[J]. Fuzzy Systems & Operations Research and Management, 2016, 367:171-182. [17] JIANG Yuncheng, LIU Hai, TANG Yong, et al. Semantic decision making using ontology-based soft sets[J]. Mathematical and Computer Modelling, 2011, 53:1140-1149. [18] HU Junhua, PAN Li, YANG Yan, et al. A group medical diagnosis model based on intuitionistic fuzzy soft sets[J]. Applied Soft Computing Journal, 2019, 77:453-466. [19] QIN Keyun, ZHAO Hua. Lattice structures of fuzzy soft set[J]. Lecture Notes in Computer Science, 2010, 6215:126-133. [20] 郭智莲, 杨海龙. 区间值模糊软集的格结构[J]. 计算机工程与应用, 2011, 47(33):7-9. GUO Zhilian, YANG Hailong. Lattice structures of interval-valued fuzzy soft sets[J]. Computer Engineering and Applications, 2011, 47(33):7-9. [21] 周小强, 李庆国. 广义直觉模糊软集的格结构[J]. 湖南大学学报(自然科学版), 2014, 41(3):113-116. ZHOU Xiaoqiang, LI Qingguo. Lattice structure of generalized intuitionistic fuzzy soft sets[J]. Journal of Hunan University(Natural Science), 2014, 41(3):113-116. [22] YAGER R R. Pythagorean membership grades in multi-criteria decision making[J]. IEEE Transaction on Fuzzy Systems, 2014, 22(4):958-965. [23] 彭新东,杨勇,宋娟萍,等.毕达哥拉斯模糊软集及其应用[J].计算机工程,2015,41(7):224-229. PENG Xindong, YANG Yong, SONG Juanping, et al. Pythagorean fuzzy soft set and its application[J]. Computer Engineering, 2015, 41(7):224-229. [24] JIA-HUA Duojie, ZHANG Haidong, HE Yanping. Possibility Pythagorean fuzzy soft set and its application[J]. Journal of Intelligent & Fuzzy Systems, 2019, 36(1):413-421. [25] ZHANG Xiaolu, XU Zeshui. Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets[J]. International Journal of Intelligent Systems, 2014, 29(12):1061-1078. [26] 张振琳. 离散数学[M]. 沈阳: 辽宁科学技术出版社, 2012: 112-118. ZHANG Zhenlin. Discrete mathematics [M]. Shenyang: Liaoning Science and Technology Press, 2012: 112-118. |
[1] | 张伟,付艳玲. Hilbert空间中连续广义框架的分解[J]. 《山东大学学报(理学版)》, 2019, 54(8): 76-80. |
[2] | 戴磊,黄小静,郭奇. (ω1)性质与单值扩张性质[J]. 《山东大学学报(理学版)》, 2019, 54(8): 55-61. |
[3] | 陶双平,杨雨荷. 分数次极大算子及交换子在λ-中心Morrey空间上的加权估计[J]. 《山东大学学报(理学版)》, 2019, 54(8): 68-75. |
[4] | 张倩,李萱,李歆,郑慧慧,李林涵,张良云. 由Sweedler四维Hopf代数构造Rota-Baxter代数[J]. 《山东大学学报(理学版)》, 2019, 54(6): 47-52. |
[5] | 王涛. Gauss-Weierstrass算子的逼近性质研究[J]. 《山东大学学报(理学版)》, 2019, 54(6): 96-98. |
[6] | 方小珍,孙爱文,王敏,束立生. 广义多线性算子在变指数空间上的有界性[J]. 《山东大学学报(理学版)》, 2019, 54(4): 6-16. |
[7] | 张申贵. 变分方法对变指数脉冲微分系统的应用[J]. 《山东大学学报(理学版)》, 2019, 54(4): 22-28. |
[8] | 韩琦,殷世德,陈芷禾. 量子计算中旋转算子的相关性质[J]. 《山东大学学报(理学版)》, 2019, 54(2): 121-126. |
[9] | 熊兴国,路玲霞. 基于MV-代数的度量型模糊粗糙集[J]. 《山东大学学报(理学版)》, 2019, 54(11): 81-89. |
[10] | 周玉兰,李晓慧,程秀强,薛蕊. 连续时间Guichardet-Fock空间中的计数算子的表示[J]. 《山东大学学报(理学版)》, 2019, 54(11): 108-114. |
[11] | 姬杰. 一类脉冲Strum-Liouville算子的特征值渐近式和迹公式[J]. 《山东大学学报(理学版)》, 2019, 54(10): 49-56. |
[12] | 宋君秋,贾梅,刘锡平,李琳. 具p-Laplace算子分数阶非齐次边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 57-66. |
[13] | 陶双平,高荣. 多线性分数次积分和极大算子在Morrey空间上的加权估计[J]. 山东大学学报(理学版), 2018, 53(6): 30-37. |
[14] | 刘春辉. 可换BR0-代数在一般集合上的蕴涵表示形式[J]. 山东大学学报(理学版), 2018, 53(6): 86-94. |
[15] | 李春芳,孟彬. 测度框架的若干性质[J]. 《山东大学学报(理学版)》, 2018, 53(12): 99-104. |
|