您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (1): 23-32.doi: 10.6040/j.issn.1671-9352.0.2019.069

• • 上一篇    下一篇

一类捕食与被捕食模型最优控制问题的有限元方法的先验误差估计

郑瑞瑞1,孙同军2*   

  1. 1.山东交通学院理学院, 山东 济南 250357;2.山东大学数学学院, 山东 济南 250100
  • 发布日期:2020-01-10
  • 作者简介:郑瑞瑞(1984— ),女,硕士,讲师,研究方向为偏微分方程最优控制问题的数值解法. E-mail:mathzheng@126.com*通信作者简介:孙同军(1970— ),男,博士,教授,研究方向为偏微分方程最优控制问题的数值解法. E-mail:tjsun@sdu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11871312);山东省自然科学基金资助项目(ZR2018MA007)

A priori error estimates of finite element methods for an optimal control problem governed by a one-prey and one-predator model

ZHENG Rui-rui1, SUN Tong-jun2*   

  1. 1. School of Science, Shandong Jiaotong University, Jinan 250357, Shandong, China;
    2. School of Mathematics, Shandong University, Jinan 250100, Shandong, China
  • Published:2020-01-10

摘要: 讨论了一类具有一个捕食者和一个被捕食者的捕食模型的最优控制问题。利用最优控制理论,推导出对偶状态方程和最优性条件。采用分片线性连续函数对状态变量、对偶状态变量进行逼近,分片常数函数对控制变量进行逼近,建立了模型问题的有限元全离散格式。通过分析,推导得到状态变量、对偶状态变量和控制变量的先验误差估计。

关键词: 捕食与被捕食模型, 最优控制问题, 对偶状态变量, 最优性条件, 先验误差估计

Abstract: An optimal control problem governed by a one-prey and one-predator model is considered. The co-state equations and optimality conditions are established using optimal control theory. In order to construct the fully discrete approximation, the state and co-state variables are approximated by piecewise linear continuous functions and the control variable is approximated by piecewise constant functions. A priori error estimates for the state variables, co-state variables and control variable are proved.

Key words: predator and prey model, optimal control problem, co-state variable, optimality condition, priori error estimate

中图分类号: 

  • O241.82
[1] LIONS J L. Optimal control of systems governed by partial differential equations[M]. Berlin: Springer-Verlag, 1971.
[2] LIU Wenbin, YAN Ningning. Adaptive finite element method for optimal control governed by PDEs[M]. Beijing: Science Press, 2008.
[3] FU Hongfei, RUI Hongxing. A prior error for optimal control problem governed by transient advection-diffusion equations[J]. J Sci Comput, 2009, 38:290-315.
[4] FU Hongfei, RUI Hongxing. A characteristic-mixed finite element method for time-dependent convection-diffusion optimal control problem[J]. Appl Math Comput, 2011, 218:3430-3440.
[5] SUN Tongjun. Discontinuous Galerkin finite element method with interior penalties for convection diffusion optimal control problem[J]. Int J Numer Anal Model, 2010, 7(1):87-107.
[6] SUN Tongjun, GE Liang, LIU Wenbin. Equivalent a posteriori error estimates for a constrained optimal control problem governed by parabolic equations[J]. Int J Numer Anal Model, 2013, 10(1):1-23.
[7] SUN Tongjun, SHEN Wanfang, GONG Benxue, et al. A priori error estimate of stochastic Galerkin method for optimal control problem governed by stochastic elliptic PDE with constrained control[J]. J Sci Comput, 2016, 67(2):405-431.
[8] DAWES J H P, SOUZA M O. A derivation of Hollings type Ⅰ,Ⅱ and Ⅲ functional responses in predator-prey systems[J]. J Theor Biol, 2013, 327:11-22.
[9] APREUTESEI N C. An optimal control problem for a prey-predator system with a general functional response[J]. Appl Math Lett, 2009, 22:1062-1065.
[10] ZHANG Lei, LIU Bin. Optimal control problem for an ecosystem with two competing preys and one predator[J]. J Math Anal Appl, 2015, 424:201-220.
[11] APREUTESEI N C, DIMITRIU G. On a prey-predator reaction-diffusion system with Holling type III functional response[J]. J Comput Appl Math, 2010, 235:366-379.
[12] GARVIE M R, TRENCHEA C. Optimal control of a Nutrient-Phytoplankton-Zooplankon-Fish system[J]. SIAM J Control Optim, 2007, 46(3):775-791.
[13] APREUTESEI N C. Necessary optimality conditions for a Lotka-Volterra three species system[J]. Math Model Nat Phenom, 2006,1(1):120-13.
[14] APREUTESEI N C, DIMITRIU G, STRUGARIU R. An optimal control problem for a two-prey and one-predator model with diffusion[J]. Comput Math Appl, 2014, 67:2127-2143.
[15] CIARLET P G. The finite element method for elliptic problems[M]. Philadelphia: SIAM, 2002.
[16] LIU Wenbin, YAN Ningning. A posteriori error estimates for control problems governed by Stocks equations[J]. SIAM J Numer Anal, 2002, 40:1850-1869.
[17] THOMÉE V. Galerkin finite element methods for parabolic problems[M]. Berlin: Springer, Springer Series in Computational Mathematics, 1997.
[18] WHEELER M F. A priori L2 error estimates for Galerkin approximations to parabolic partial differential equations[J]. SIAM J Numer Anal, 1973, 10:723-759.
[1] 刘兵兵,郝庆一. 一类悲观二层规划问题的一阶必要最优性条件[J]. 山东大学学报(理学版), 2016, 51(3): 44-50.
[2] 余丽. 集值映射的ε-强次微分及应用[J]. J4, 2013, 48(3): 99-105.
[3] 宿 洁, . 值型线性双层规划的共轭对偶及最优性条件[J]. J4, 2007, 42(10): 13-17 .
[4] 陈莉, . 非方离散广义系统的奇异LQ问题及最优代价单调性[J]. J4, 2006, 41(5): 80-83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王苒群,左连翠. 不含4-圈和5-圈的平面图的线性2-荫度[J]. J4, 2012, 47(6): 71 -75 .
[2] 朱林. A4型箭图的可分单态射表示和RSS等价[J]. 山东大学学报(理学版), 2018, 53(2): 1 -8 .
[3] 刘园园,曹德欣,秦军. 非线性二层混合整数规划问题的区间算法[J]. 山东大学学报(理学版), 2018, 53(2): 9 -17 .
[4] 曹伟东,戴涛,于金彪,王晓宏,施安峰. 化学驱模型中压力方程的交替方向解法改进[J]. 山东大学学报(理学版), 2018, 53(10): 88 -94 .
[5] 李金海,吴伟志. 形式概念分析的粒计算方法及其研究展望[J]. 山东大学学报(理学版), 2017, 52(7): 1 -12 .
[6] 孙建东,顾秀森,李彦,徐蔚然. 基于COAE2016数据集的中文实体关系抽取算法研究[J]. 山东大学学报(理学版), 2017, 52(9): 7 -12 .
[7] 刘方圆,孟宪佳,汤战勇,房鼎益,龚晓庆. 基于smali代码混淆的Android应用保护方法Symbol`@@[J]. 山东大学学报(理学版), 2017, 52(3): 44 -50 .
[8] 廖祥文,张凌鹰,魏晶晶,桂林,程学旗,陈国龙. 融合时间特征的社交媒介用户影响力分析[J]. 山东大学学报(理学版), 2018, 53(3): 1 -12 .
[9] 顾沈明,陆瑾璐,吴伟志,庄宇斌. 广义多尺度决策系统的局部最优粒度选择[J]. 山东大学学报(理学版), 2018, 53(8): 1 -8 .
[10] 陈宏宇1, 张丽2. 不含弦5-圈和弦6-圈的平面图的线性2荫度[J]. 山东大学学报(理学版), 2014, 49(06): 26 -30 .