您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (10): 24-30.doi: 10.6040/j.issn.1671-9352.0.2020.060

• • 上一篇    下一篇

强Gorenstein C-内射模和强Gorenstein C-平坦模

张翠萍,刘雅娟*   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 出版日期:2020-10-20 发布日期:2020-10-07
  • 作者简介:张翠萍(1974— ), 女, 博士, 副教授, 硕士生导师, 研究方向为环的同调理论. E-mail:zhangcp@nwnu.edu.cu*通信作者简介:刘雅娟(1993— ), 女, 硕士研究生, 研究方向为环的同调理论. E-mail:lyj18153954309@163.com
  • 基金资助:
    国家自然科学基金资助项目(11761060)

Strongly Gorenstein C-injective module and strongly Gorenstein C-flat module

ZHANG Cui-ping, LIU Ya-juan*   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Online:2020-10-20 Published:2020-10-07

摘要: 研究了强Gorenstein C-内射模和强Gorenstein C-平坦模的一些性质,并且在特定环上给出了这两类模之间的联系。

关键词: 半对偶化模, 强Gorenstein C-内射模, 强Gorenstein C-平坦模

Abstract: Some properities of strongly Gorenstein C-injective and strongly Gorenstein C-flat modules are studied, and give the connection between the two types of modules on the specific ring.

Key words: semidualizing module, strongly Gorenstein C-injective module, strongly Gorenstein C-flat module

中图分类号: 

  • O153.3
[1] AUSLANDER M, BRIDGER M. Stable module theory[M]. Providence, RI: Amer Math Soc, 1969.
[2] ENOCHS E E, JENDA O M G. Relative homological algebra[M]. Berlin: Walter de Gruyter, 2000.
[3] BENNIS D, MAHDOU N. Strongly Gorenstein projective, injective and flat modules[J]. Journal of Pure and Applied Algebra, 2007, 210(4):437-445.
[4] YANG Xiaoyan, LIU Zhongkui. Strongly Gorenstein projective, injective and flat modules[J]. Journal of Pure and Applied Algebra, 2008, 320:2659-2674.
[5] HOLM H, WHITE D. Foxby equivalence over associative rings[J]. Math Kyoto Univ, 2007, 47:781-808.
[6] HOLM H, JRGENSEN P. Semi-dualizing modules and related Gorenstein homological dimensions[J]. Journal of Pure and Applied Algebra, 2006, 205(2):423-445.
[7] WANG Zhanping, GUO Shoutao, MA Haiyu. Stability of Gorenstein modules with respect to a semidualizing module[M]. J Math, 2017, 37(6):1143-1153.
[8] ZHANG Wanru, LIU Zhongkui, YANG Xiaoyan. Foxby equivalences associated to strongly Gorenstein modules[J]. Kodai Math J, 2018, 41:397-412.
[9] 李金兰,梁春丽. 强Gorenstein C -平坦模[J].山东大学学报(理学版),2017,52(12):25-31. LI Jinlan, LIANG Chunli. Strong Gorenstein C -flat modules[J]. Journal of Shangdong University(Natural Science), 2017, 52(12):25-31.
[10] YANG Xiaoyan, LIU Zhongkui. C -Gorenstein projective, injective and flat modules[J]. Czechoslovak Mathematical Journal, 2010, 60(135):1109-1129.
[11] XING Jianmin, XING Rufeng. Gorenstein projective, injective and flat modules relative to semidualizing modules[J]. Internation Scholarly and Scientific Research Innovation, 2014, 8(2):359-364.
[12] SATHER-WAGSTAFF S, SHARIF T, WHITE D. AB-Contexts and stability for Gorenstein flat modules with respect to semidualizing modules[J]. Algebr Representation Theory, 2011, 14:403-428.
[13] HOLM H. Gorenstein homological dimensions[J]. Journal of Pure and Applied Algebra, 2004,189:167-193.
[14] KASCH F,WALLACE D A R. Modules and rings[M]. New York: Academic Press, 1982.
[15] LAM T Y. Lectures on modules and rings[M] //Graduate Texts in Math. New York: Springer-Verlag, 1999.
[16] ROTMAN JJ. An introduction to homological algebra[M]. New York: Academic Press, 1979.
[1] 罗肖强,谭玲玲,邢建民. 关于C-无挠模和C-自反模的若干同调性质[J]. 《山东大学学报(理学版)》, 2019, 54(4): 72-79.
[2] 杨春花. 关于复形的Gc-内射维数的一个注记[J]. 山东大学学报(理学版), 2017, 52(11): 82-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 冒爱琴1, 2, 杨明君2, 3, 俞海云2, 张品1, 潘仁明1*. 五氟乙烷灭火剂高温热解机理研究[J]. J4, 2013, 48(1): 51 -55 .
[2] 任敏1,2,张光辉1. 右半直线上依分布收敛独立随机环境中随机游动的吸收概率[J]. J4, 2013, 48(1): 93 -99 .
[3] 于秀清. P-集合的(σ,τ)-扩展模型与其性质[J]. 山东大学学报(理学版), 2014, 49(04): 90 -94 .
[4] 薛秋芳1,2,高兴宝1*,刘晓光1. H-矩阵基于外推GaussSeidel迭代法的几个等价条件[J]. J4, 2013, 48(4): 65 -71 .
[5] 王 瑶,刘 建,王仁卿,* . 阿利效应及其对生物入侵和自然保护中小种群管理的启示[J]. J4, 2007, 42(1): 76 -82 .
[6] 王红妹,肖敏*,李正义,李玉梅,钱新民 . 转糖基β-半乳糖苷酶产生菌筛选和鉴定及酶催化生成低聚半乳糖[J]. J4, 2006, 41(1): 133 -139 .
[7] 张亚东1,李新祥2,石东洋3. 强阻尼波动方程的非协调有限元超收敛分析[J]. 山东大学学报(理学版), 2014, 49(05): 28 -35 .
[8] 田有功, 刘转玲. 任意支撑上5阶凸随机序的极值分布及其在保险精算中的应用[J]. 山东大学学报(理学版), 2014, 49(07): 57 -62 .
[9] 赵凯, 徐毅,王永刚. Tb定理的必要条件的一个证明[J]. J4, 2010, 45(6): 94 -98 .
[10] 张新东,王秋华 . 避免二阶导数计算的Newton迭代法的一个改进[J]. J4, 2007, 42(7): 72 -76 .