您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (8): 68-76.doi: 10.6040/j.issn.1671-9352.0.2021.419

• • 上一篇    下一篇

直觉模糊集所诱导的软集语义及其三支决策

巩增泰,他广朋   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 出版日期:2022-08-20 发布日期:2022-06-29
  • 作者简介:巩增泰(1965— ),男,博士,教授,博士生导师,研究方向为模糊分析学和粗糙集理论. E-mail:zt-gong@163.com
  • 基金资助:
    国家自然科学基金资助项目(12061067)

Semantics of the soft set induced by intuitionistic fuzzy set and its three-way decision

GONG Zeng-tai, TA Guang-peng   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Online:2022-08-20 Published:2022-06-29

摘要: 借助于阴影集,利用直觉模糊参数,将直觉模糊集转化为悲观阴影集和乐观阴影集,提出直觉模糊集悲观三支决策和乐观三支决策,给出直觉模糊集诱导软集的方法。利用三支决策理论,提出软集三支决策定性模型。结合直觉模糊集悲观三支决策和乐观三支决策,利用直觉模糊参数,给出软集三支决策定量模型。

关键词: 三支决策, 软集, 直觉模糊集, 阴影集

Abstract: In this paper, by means of the shadowed set, this paper transforms intuitionistic fuzzy set into pessimistic shadowed set and optimistic shadowed set by using intuitionistic fuzzy parameters, and proposes pessimistic three-way decision and optimistic three-way decision of intuitionistic fuzzy set. The method of inducting soft set by intuitionistic fuzzy set is given, and the qualitative model of three-way decision with soft set is proposed by using three-way decision theory. Combined with pessimistic three-way decision and optimistic three-way decision of intuitionistic fuzzy set, a quantitative model of three-way decision with soft sets is given by using intuitionistic fuzzy parameters.

Key words: three-way decision, soft set, intuitionistic fuzzy set, shadowed set

中图分类号: 

  • O159
[1] LI Huaxiong, ZHANG Libo, HUANG Bing, et al. Sequential three-way decision and granulation for cost-sensitive face recognition[J]. Knowledge-Based Systems, 2016, 91:241-251.
[2] YANG Yan, HU Junhua, LIU Yongmei, et al. A multiperiod hybrid decision support model for medical diagnosis and treatment based on similarities and three-way decision theory[J]. Expert Systems, 2019, 36(3):1-25.
[3] ZHANG Hengru, MIN Fan. Three-way recommender systems based on random forests[J]. Knowledge-Based Systems, 2016, 91:275-286.
[4] PAWLAK Z. Rough sets[J]. Communications of the ACM, 1995, 38(11):88-95.
[5] YAO Yiyu. Three-way decision: an interpretation of rules in rough set theory[J]. Rough Sets and Knowledge Technology, 2009, 5589:642-649.
[6] YAO Yiyu. Three-way decisions with probabilistic rough sets[J]. Information Sciences, 2010, 180(3):341-353.
[7] YAO Yiyu. The superiority of three-way decisions in probabilistic rough set models[J]. Information Sciences, 2011, 181(6):1080-1096.
[8] PEDRYCZ W. Shadowed sets: representing and processing fuzzy sets[J]. IEEE Transactions on System, Man and Cybernetics, Part B(Cybernetics), 1998, 28(1):103-109.
[9] YAO Yiyu, WANG Shu, DENG Xiaofei. Constructing shadowed sets and three-way approximations of fuzzy set[J]. Information Sciences, 2017, 412/413:132-153.
[10] MOLODTSOV D. Soft set theory: first results[J]. Computers and Mathematics with Applications, 1999, 37(4/5):19-31.
[11] YANG Jilin, YAO Yiyu. Semantics of soft sets and three-way decision with soft sets[J]. Knowledge-Based Systems, 2020, 194:105538.
[12] ZADEH A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353.
[13] ATANASSOV K T. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1):87-96.
[14] ATANASSOV K T. More on intuitionistic fuzzy set[J]. Fuzzy Sets and Systems, 1989, 33(1):37-45.
[15] XU Z H, YAGER R R. Some geometric aggregation operators based on intuitionistic fuzzy sets[J]. International Journal of General Systems, 2006, 35(4):417-433.
[16] CATTANEO G, CIUCCI D. An algebraic approach to shadowed sets[J]. Electronic Notes in Theoretical Computer Science, 2003, 82(4):64-75.
[1] 张海东,加华多杰, 南太本. 模糊软因明三支论式及其应用[J]. 《山东大学学报(理学版)》, 2022, 57(5): 38-45.
[2] 施极,索中英. 基于区间数层次分析法的损失函数确定方法[J]. 《山东大学学报(理学版)》, 2022, 57(5): 28-37.
[3] 薛占熬,李永祥,姚守倩,荆萌萌. 基于Bayesian直觉模糊粗糙集的数据分类方法[J]. 《山东大学学报(理学版)》, 2022, 57(5): 1-10.
[4] 李星宇,段景瑶. 基于三角模的直觉相似度及其应用[J]. 《山东大学学报(理学版)》, 2022, 57(4): 37-47.
[5] 杨洁,罗天,李阳军. 基于TOPSIS的无标签序贯三支决策模型[J]. 《山东大学学报(理学版)》, 2022, 57(3): 41-48.
[6] 李敏,杨亚锋,雷宇,李丽红. 基于可拓域变化代价最小的最优粒度选择[J]. 《山东大学学报(理学版)》, 2021, 56(2): 17-27.
[7] 郑焕科,张晶,杨亚琦,熊梅惠. 多属性决策的时间不确定事件流时序推理方法[J]. 《山东大学学报(理学版)》, 2020, 55(7): 67-80.
[8] 余鹰,吴新念,王乐为,张应龙. 基于标记相关性的多标记三支分类算法[J]. 《山东大学学报(理学版)》, 2020, 55(3): 81-88.
[9] 姬儒雅,魏玲,任睿思,赵思雨. 毕达哥拉斯模糊三支概念格[J]. 《山东大学学报(理学版)》, 2020, 55(11): 58-65.
[10] 张海东,加华多杰,贺艳平. 广义Pythagorean模糊软集的代数结构[J]. 《山东大学学报(理学版)》, 2020, 55(1): 33-40.
[11] 于晓丹,董丽,吴聪,孔祥智. 软关联环[J]. 山东大学学报(理学版), 2018, 53(4): 31-35.
[12] 刘国涛,张燕平,徐晨初. 一种优化覆盖中心的三支决策模型[J]. 山东大学学报(理学版), 2017, 52(3): 105-110.
[13] 彭家寅. 关联模糊集理论的伪BL-代数的软滤子[J]. 山东大学学报(理学版), 2015, 50(08): 40-45.
[14] 石素玮, 李进金, 谭安辉. 一类覆盖粗糙直觉模糊集模型的模糊粗糙度和粗糙熵[J]. 山东大学学报(理学版), 2014, 49(08): 86-91.
[15] 田海龙, 朱艳辉, 梁韬, 马进, 刘璟. 基于三支决策的中文微博观点句识别研究[J]. 山东大学学报(理学版), 2014, 49(08): 58-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1 -22 .
[2] 何海伦, 陈秀兰*. 变性剂和缓冲系统对适冷蛋白酶MCP-01和中温蛋白酶BP-01构象影响的圆二色光谱分析何海伦, 陈秀兰*[J]. 山东大学学报(理学版), 2013, 48(1): 23 -29 .
[3] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .
[4] 孙小婷1,靳岚2*. DOSY在寡糖混合物分析中的应用[J]. J4, 2013, 48(1): 43 -45 .
[5] 罗斯特,卢丽倩,崔若飞,周伟伟,李增勇*. Monte-Carlo仿真酒精特征波长光子在皮肤中的传输规律及光纤探头设计[J]. J4, 2013, 48(1): 46 -50 .
[6] 杨伦,徐正刚,王慧*,陈其美,陈伟,胡艳霞,石元,祝洪磊,曾勇庆*. RNA干扰沉默PID1基因在C2C12细胞中表达的研究[J]. J4, 2013, 48(1): 36 -42 .
[7] 冒爱琴1, 2, 杨明君2, 3, 俞海云2, 张品1, 潘仁明1*. 五氟乙烷灭火剂高温热解机理研究[J]. J4, 2013, 48(1): 51 -55 .
[8] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78 -82 .
[9] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[10] 董伟伟. 一种具有独立子系统的决策单元DEA排序新方法[J]. J4, 2013, 48(1): 89 -92 .