您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (9): 52-61.doi: 10.6040/j.issn.1671-9352.0.2024.024

• • 上一篇    

基于混合策略的鹈鹕优化算法

刘魏岩,齐迹*,梁红,林钰川   

  1. 齐齐哈尔大学通信与电子工程学院, 黑龙江 齐齐哈尔 161006
  • 发布日期:2025-09-10
  • 通讯作者: 齐迹(1979— ),女,教授,博士,研究方向为网络化系统控制与智能优化. E-mail:qi_ji_1979@126.com
  • 作者简介:刘魏岩(1989— ),男,讲师,硕士,研究方向为智能优化算法. E-mail:l_weiyan@163.com*通信作者:齐迹(1979— ),女,教授,博士,研究方向为网络化系统控制与智能优化. E-mail:qi_ji_1979@126.com
  • 基金资助:
    河北省自然科学基金资助项目(F2023107002);黑龙江省省属本科高校基本科研业务费资助项目(135509226);黑龙江省农业多维传感器信息感知工程技术研究中心开放课题资助项目(DWCGQKF202103);黑龙江省高等教育教学改革研究资助项目(SJGY20210952)

A pelican optimization algorithm based on hybrid strategy

LIU Weiyan, QI Ji*, LIANG Hong, LIN Yuchuan   

  1. College of Communication and Electronic Engineering, Qiqihar University, Qiqihar 161006, Heilongjiang, China
  • Published:2025-09-10

摘要: 为了提高鹈鹕优化算法的优化性能与稳定性,提出一种基于混合策略的鹈鹕优化算法。在鹈鹕算法备选解的生成机制中使用偏好权重策略,引导备选解进行多样性的探索。采用随机搜索策略更新部分目标函数值较差的备选解位置,使得备选解能够跳出局部最优限制。使用大范围的自适应搜索半径策略,增大各备选解发现更优解的可能。在18个测试函数上结合对比算法开展寻优实验,分析寻优结果并进行Wilcoxon秩和检验,验证了改进后的鹈鹕优化算法具有更好的寻优性能与稳定性。

关键词: 鹈鹕优化算法, 混合策略, 偏好权重, 函数优化

Abstract: In order to improve the optimization performance and stability of the pelican optimization algorithm, a hybrid strategy-based pelican optimization algorithm is proposed. In the generation mechanism of candidate solutions for the pelican algorithm, the preference weight strategy is employed to guide the candidate solutions towards exploring diversity. A random search strategy is used to update partial alternative solution positions, which helps these candidate solutions with poor objective function values escape local optima. A large-range adaptive search radius strategy has been applied to enhance the algorithm, increasing the probability for each candidate solution to discover better solutions. Combined with comparative algorithms, optimization experiments are conducted on 18 test functions. The optimization results are analyzed and Wilcoxon rank sum tests are performed to verify that this improved Pelican optimization algorithm has better optimization performance and stability.

Key words: pelican optimization algorithm, hybrid strategy, preference weight, function optimization

中图分类号: 

  • TP301
[1] ZHANG Xinming, WANG Doudou, CHEN Haiyan. Improved biogeography-based optimization algorithm and its application to clustering optimization and medical image segmentation[J]. IEEE Access, 2019, 7:28810-28825.
[2] WANG Zhaoxia, PEN Haibo, YANG Ting, et al. Structure-priority image restoration through genetic algorithm optimization[J]. IEEE Access, 2020, 8:90698-90708.
[3] XIONG Xin, HU Xi, GUO Huan. A hybrid optimized grey seasonal variation index model improved by whale optimization algorithm for forecasting the residential electricity consumption[J]. Energy, 2021, 234:121127.
[4] GUERRAICHE K, DEKHICI L, CHATELET E, et al. Multi-objective electrical power system design optimization using a modified bat algorithm[J]. Energies, 2021, 14:3956.
[5] 张金珂,张建刚. 基于改进粒子群优化算法的信号检测及故障诊断[J]. 山东大学学报(理学版),2023,58(5):63-75,83. ZHANG Jinke, ZHANG Jiangang. Signal detection and fault diagnosis based on improved particle swarm optimization algorithm[J]. Journal of Shandong University(Natural Science), 2023, 58(5):63-75, 83.
[6] 行鸿彦,韩杰,刘刚. 混沌变步长萤火虫优化的随机共振微弱信号检测[J]. 探测与控制学报,2019,41(1):64-70. XING Hongyan, HAN Jie, LIU Gang. Chaotic variable step glowworm swarm optimization stochastic resonance for weak signal detection[J]. Journal of Detection & Control, 2019, 41(1):64-70.
[7] CHALLAB J M, MARDUKHI F. Ant colony optimization-rain optimization algorithm based on hybrid deep learning for diagnosis of lung involvement in coronavirus patients[J]. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2023, 47:887-902.
[8] RERE LMR, FANANY M I, ARYMURTHY A M. Simulated annealing algorithm for deep learning[J]. Procedia Computer Science, 2015, 72:137-144.
[9] 纪延峰. 改进的萤火虫算法及其在多约束环境下的排课问题研究[D]. 南昌:江西财经大学,2022:44-55. JI Yanfeng. Research on improved firefly algorithm and its course problem in multi-constraint environment[D]. Nanchang: Jiangxi University of Finance and Economics, 2022:44-55.
[10] 刘明. 智能算法在实验教学排课中的应用[J]. 实验技术与管理,2021,38(7):244-247. LIU Ming. Application of intelligent algorithm in experimental course arrangement[J]. Experimental Technology and Management, 2021, 38(7):244-247.
[11] 李安东,刘升. 混合策略改进鲸鱼优化算法[J]. 计算机应用研究,2022,39(5):1415-1421. LI Andong, LIU Sheng. Multi-strategy improved whale optimization algorithm[J]. Application Research of Computers, 2022, 39(5):1415-1421.
[12] 李建伟,于广滨. 改进麻雀搜索算法的轮毂减速器优化设计[J]. 哈尔滨理工大学学报,2022,27(5):56-63. LI Jianwei, YU Guangbin. Optimization design of hub reducer based on improved sparrow search algorithm[J]. Journal of Harbin University of Science and Technology, 2022, 27(5):56-63.
[13] 耿召里,李目,曹淑睿,等. 基于混合反向学习策略的鲸鱼优化算法[J]. 计算机工程与科学,2022,44(2):355-363. GENG Zhaoli, LI Mu, CAO Shurui, et al. A whale optimization algorithm based on hybrid reverse learning strategy[J]. Computer Engineering & Science, 2022, 44(2):355-363.
[14] 贾鹤鸣,陈丽珍,力尚龙,等. 透镜成像反向学习的精英池侏儒猫鼬优化算法[J]. 计算机工程与应用,2023,59(24):131-139. JIA Heming, CHEN Lizhen, LI Shanglong, et al. Optimization algorithm of elite pool dwarf mongoose based on lens imaging reverse learning[J]. Computer Engineering and Applications, 2023, 59(24):131-139.
[15] 秦宏伍,王立铮,傅渝,等. 基于多策略结合的灰狼优化算法及应用[J]. 山东大学学报(理学版),2024,59(3):51-60. QIN Hongwu, WANG Lizheng, FU Yu, et al. Grey wolf optimization algorithm based on multi-strategy combination and its application[J]. Journal of Shandong University(Natural Science), 2024, 59(3):51-60.
[16] 周鹏,董朝轶,陈晓艳,等. 基于Tent混沌和透镜成像学习策略的平衡优化器算法[J]. 控制与决策,2023,38(6):1569-1576. ZHOU Peng, DONG Chaoyi, CHEN Xiaoyan, et al. An equilibrium optimizer algorithm based on a tent chaos and lens imaging learning strategy[J]. Control and Decision, 2023, 38(6):1569-1576.
[17] 闫晓斌,方洋旺,彭维仕. 基于自适应高斯变异的多目标哈里斯鹰优化算法[J]. 北京航空航天大学学报,2024,50(8):2636-2645. YAN Xiaobin, FANG Yangwang, PENG Weishi. Multi-objective Harris Hawk optimization algorithm based on adaptive gaussian mutation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(8):2636-2645.
[18] 李大海,熊文清,王振东. 融合多策略的增强海鸥优化算法[J]. 计算机应用研究,2023,40(3):717-724. LI Dahai, XIONG Wenqing, WANG Zhendong. Enhancing seagull optimization algorithm by applying multiple strategies[J]. Application Research of Computers, 2023, 40(3):717-724.
[19] 付小朋,王勇,冯爱武. 采用混合搜索策略的阿奎拉优化算法[J]. 计算机应用研究,2022,39(10):3026-3032. FU Xiaopeng, WANG Yong, FENG Aiwu. Aquila optimization algorithm using hybrid search strategies[J]. Application Research of Computers, 2022, 39(10):3026-3032.
[20] 王筱薇,范勤勤,王维莉. 基于基因水平多样性的微种群教与学优化算法[J]. 计算机应用研究,2021,38(4):1097-1101. WANG Xiaowei, FAN Qinqin, WANG Weili. Micro-population teaching-learning-based optimization based on gene level diversity[J]. Application Research of Computers, 2021, 38(4):1097-1101.
[21] TROJOVSKY P, DEHGHANI M. Pelican optimization algorithm: a novel nature-inspired algorithm for engineering applications[J]. Sensors, 2022, 22:855.
[1] 田径,龚家豪. 单缀严格语言的组合性质及代数特征[J]. 《山东大学学报(理学版)》, 2024, 59(6): 91-97, 107.
[2] 王丽,李敬文,杨文珠,裴华艳. 单圈图的邻点可约全标号[J]. 《山东大学学报(理学版)》, 2024, 59(6): 44-55.
[3] 秦宏伍,王立铮,傅渝,隋沐翾,何秉高. 基于多策略结合的灰狼优化算法及应用[J]. 《山东大学学报(理学版)》, 2024, 59(3): 51-60.
[4] 李平,杨巨芳,杨艳萍. 非确定型模糊有限自动机的一种新的极小确定化方法[J]. 《山东大学学报(理学版)》, 2024, 59(1): 56-61.
[5] 罗兴隆,贺兴时,周洁,杨新社. 基于非洲秃鹫优化算法改进的密度峰值聚类[J]. 《山东大学学报(理学版)》, 2024, 59(1): 46-55,71.
[6] 刘海燕,拓守恒. 求解全局优化问题的一个新的填充函数算法[J]. 《山东大学学报(理学版)》, 2023, 58(7): 80-87.
[7] 王海辉,赵路瑶,李平. 非确定模糊有穷自动机的ε-语言逼近[J]. 《山东大学学报(理学版)》, 2021, 56(3): 37-43.
[8] 彭家寅. 以十量子纠缠态为信道的循环受控量子隐形传态[J]. 《山东大学学报(理学版)》, 2019, 54(9): 98-104.
[9] 彭家寅. 以真五粒子非最大纠缠态为信道的双向受控隐形传态[J]. 《山东大学学报(理学版)》, 2018, 53(12): 105-113.
[10] 刘利钊,于佳平,刘健,李俊祎,韩哨兵,许华荣,林怀钏,朱顺痣. 基于量子辐射场的大数据安全存储寻址算法[J]. 山东大学学报(理学版), 2018, 53(7): 65-74.
[11] 宋省身,杨岳湘,江宇. 基于单指令级并行的快速求交算法[J]. 山东大学学报(理学版), 2018, 53(3): 54-62.
[12] 齐平, 王福成, 王必晴. 一种基于图模型的可信云资源调度算法[J]. 山东大学学报(理学版), 2018, 53(1): 63-74.
[13] 朱丹,谢晓尧,徐洋,夏梦婷. 基于云模型与贝叶斯反馈的网络安全等级评估方法[J]. 山东大学学报(理学版), 2018, 53(1): 53-62.
[14] 史佩昀,高兴宝. 基于个体强度的自适应差分多目标免疫算法[J]. 山东大学学报(理学版), 2017, 52(11): 1-10.
[15] 王峰,曼媛,王幸乐. 基于人工免疫的N最短路径检索算法[J]. 山东大学学报(理学版), 2017, 52(9): 35-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!