您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4

• 论文 • 上一篇    下一篇

非线性变系数二阶Neumann边值问题的正解

姚庆六   

  1. 南京财经大学 应用数学系, 江苏 南京 210003
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2006-10-24 发布日期:2006-10-24
  • 通讯作者: 姚庆六

Positive solutions of nonlinear second-order Neumann boundary value problems with a variable coefficient

YAO Qing-liu   

  1. Department of Applied Mathematics, Nanjing University of Finance and Economics, Nanjing 210003, Jiangsu, China
  • Received:1900-01-01 Revised:1900-01-01 Online:2006-10-24 Published:2006-10-24
  • Contact: YAO Qing-liu

摘要: Neumann边值问题描述了在边界点处梯度为零的大量物理现象。 本文利用锥上的不动点指数定理研究了带有函数系数k(t)的非线性二阶Neumann边值问题u″(t)+k(t)u(t)=f(t,u(t)),0≤t≤1,u′(0)=u′(1)=0的正解。 主要结论表明,只要非线性项在某些有界集合上的增长速度 是适当的, 该问题就具有n个正解, 其中n是一个任意的自然数。

关键词: 非线性常微分方程, 多解性 , 存在性, 正解, Neumann边值问题

Abstract: Neumann boundary value problems describe many physical phenomena whose gradients are zero at boundary points. The positive solutions of nonlinear second-order Neumann boundary value problem u″(t)+k(t)u(t)=f(t,u(t)), 0≤t≤1, u′(0)=u′(1)=0 with function coefficient k(t)were studied by applying the fixed-point index theorem of cones. The main results show that the problem has n positive solutions provided growth rates of nonlinear term on some bounded sets are appropriate, where n is an arbitrary natural number.

Key words: multiplicity , existence, positive solution, Neumann boundary value problem, nonlinear ordinary differential equation

中图分类号: 

  • O175.8
[1] 王娇. 一类非线性二阶常微分方程 Dirichlet问题正解的存在性[J]. 山东大学学报(理学版), 2018, 53(6): 64-69.
[2] 叶芙梅. 带导数项共振问题的可解性[J]. 山东大学学报(理学版), 2018, 53(2): 25-31.
[3] 甄苇苇,曾剑,任建龙. 基于变分理论与时间相关的抛物型反源问题[J]. 山东大学学报(理学版), 2018, 53(10): 61-71.
[4] 闫东亮. 带有导数项的二阶周期问题正解[J]. 山东大学学报(理学版), 2017, 52(9): 69-75.
[5] 李涛涛. 二阶半正椭圆微分方程径向正解的存在性[J]. 山东大学学报(理学版), 2017, 52(4): 48-55.
[6] 张莎,贾梅,李燕,李晓晨. 分数阶脉冲微分方程三点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 66-72.
[7] 冯海星,翟成波. 高阶非线性分数阶微分方程系统的多个正解[J]. 山东大学学报(理学版), 2017, 52(12): 48-57.
[8] 何志乾, 苗亮英. 带弱奇性的二阶阻尼微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2017, 52(10): 84-88.
[9] 陈彬. 格林函数变号的三阶周期边值问题[J]. 山东大学学报(理学版), 2016, 51(8): 79-83.
[10] 苏艳. 共振离散二阶Neumann问题解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 37-41.
[11] 陈彬,Abuelgasimalshaby Elzebir. 共振条件下的二阶多点边值问题解的存在性和多解性[J]. 山东大学学报(理学版), 2016, 51(4): 49-52.
[12] 蔡超. 一类Kolmogorov型方程的系数反演问题[J]. 山东大学学报(理学版), 2016, 51(4): 127-134.
[13] 郭丽君. 非线性微分方程三阶三点边值问题正解的存在性[J]. 山东大学学报(理学版), 2016, 51(12): 47-53.
[14] 朱雯雯. 带参数的一阶周期边值问题正解的存在性及多解性[J]. 山东大学学报(理学版), 2016, 51(12): 36-41.
[15] 陈强, 贾梅, 张海斌. 一类非线性分数阶微分方程四点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2015, 50(04): 42-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!