王碧玉,曹小红*
WANG Bi-yu, CAO Xiao-hong*
摘要: 设T=AB
0JA*J∈B(HH),其中A,B∈B(H),共轭变换J为H上满足J2=I且任给x,y∈H,都有〈Jx,Jy〉=〈y,x〉的反线性映射。研究了算子矩阵T的单值扩张性质以及Browder定理在紧摄动下的稳定性。
[1] | 宋佳佳,曹小红,戴磊. 上三角算子矩阵SVEP微小紧摄动的判定[J]. 山东大学学报(理学版), 2017, 52(4): 61-67. |
[2] | 孔莹莹,曹小红,戴磊. a-Weyl定理的判定及其摄动[J]. 山东大学学报(理学版), 2017, 52(10): 77-83. |
[3] | 董炯,曹小红. 算子立方的Weyl定理及其紧摄动[J]. 山东大学学报(理学版), 2016, 51(8): 15-21. |
[4] | 吴学俪, 曹小红, 张敏. 有界线性算子的单值扩张性质的摄动[J]. 山东大学学报(理学版), 2015, 50(12): 5-9. |
[5] | 崔苗苗, 王碧玉, 曹小红. 算子矩阵的一个注记[J]. 山东大学学报(理学版), 2014, 49(10): 56-61. |
[6] | 于维,曹小红*. 拓扑一致降标与单值延拓性质[J]. J4, 2013, 48(4): 10-14. |
[7] | 赵海燕,曹小红*. Helton类算子的(ω1)性质的稳定性[J]. J4, 2013, 48(4): 15-19. |
[8] | 史维娟,曹小红*. Weyl定理的稳定性的判定[J]. J4, 2012, 47(4): 24-27. |
|