您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (2): 1-4.doi: 10.6040/j.issn.1671-9352.0.2016.377

• •    下一篇

S-系对幺半群的刻画

乔虎生,白永发   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 收稿日期:2016-07-31 出版日期:2017-02-20 发布日期:2017-01-18
  • 作者简介:乔虎生(1974— ), 男, 博士, 教授, 研究方向为半群代数理论.E-mail: qiaohs@nwnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11461060);甘肃省高校基本科研业务费

Characterization of monoids by inverse S-acts

QIAO Hu-sheng, BAI Yong-fa   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2016-07-31 Online:2017-02-20 Published:2017-01-18

摘要: 设S是幺半群。研究了逆S-系的基本性质, 讨论了逆S-系与平坦性质的同调分类问题。

关键词: 逆S-系, 同调分类, 平坦

Abstract: Let S be a monoid. The properties of inverse S-acts is investigated, and the homological classification of inverse S-acts and flatness properties is discussed.

Key words: flatness, inverse S-acts, homological classification

中图分类号: 

  • O152.7
[1] HACH T L. Characterization of monoids by regular acts[J]. Semigroup Forum, 1985, 16:273-279.
[2] QIAO Husheng. On monoids over which all strongly flat right S-scts are regular[J]. Journal of Mathematical Research and Exposition, 2006, 26:720-724.
[3] AHSAN J, LIU Zhongkui. A homological approach to the theory of monoids[M]. Beijing: Science Press, 2008.
[4] KNAUER U, MIKHALEV A V. Wreath products of acts over monoids: regular and inverse acts[J]. Journal of Pure and Applied Algebra, 1988, 51:251-260.
[5] LIU Zhongkui. A characterization of regular monoids by flatness of left acts[J]. Semigroup Forum, 1993, 46:85-89.
[6] LIU Zhongkui. Monoids over which all regular left acts are flat[J]. Semigroup Forum, 1995, 50:135-139.
[7] WANG Ning, LIU Zhongkui. Monoids over which all strongly flat left acts are regular[J]. Communications in Algebra, 1998, 26:1863-1866.
[8] KILP M, KNAUER U, MIKHALEV A V. Monoids acts and categories[M]. Berlin: Walter de Gruyter, 2000.
[9] KILP M, KNAUER U. Characterization of monoids by properties of regular acts[J]. Journal of Pure and Applied Algebra, 1987, 46:217-231.
[10] LIU Zhongkui. Monoids over which all flat left acts are regular[J]. Journal of Pure and Applied Algebra, 1996, 111: 199-203.
[1] 卢博, 禄鹏. 复形的 FR-内射维数与 FR-平坦维数[J]. 山东大学学报(理学版), 2018, 53(6): 1-6.
[2] 郭寿桃,王占平. 正合零因子下模的Gorenstein同调维数[J]. 山东大学学报(理学版), 2018, 53(10): 17-21.
[3] 陈秀丽,陈建龙. C-投射(内射,平坦)模与优越扩张[J]. 山东大学学报(理学版), 2017, 52(8): 85-89.
[4] 乔虎生,廖敏英. GP-凝聚幺半群[J]. 山东大学学报(理学版), 2017, 52(12): 1-4.
[5] 李金兰,梁春丽. 强Gorenstein C-平坦模[J]. 山东大学学报(理学版), 2017, 52(12): 25-31.
[6] 罗肖强,邢建民. Ding gr-内射模和Ding gr-平坦模[J]. 山东大学学报(理学版), 2017, 52(11): 87-91.
[7] 王小青,梁力. 强余挠模的忠实平坦余基变换[J]. 山东大学学报(理学版), 2017, 52(11): 92-94.
[8] 文海存,乔虎生. 关于强平坦序左S-系是I-正则系的序幺半群[J]. 山东大学学报(理学版), 2016, 51(8): 35-38.
[9] 徐爱民. 关于相对同调维数[J]. 山东大学学报(理学版), 2016, 51(8): 44-48.
[10] 乔虎生, 文海存. 关于序主弱平坦S-系的一个推广[J]. 山东大学学报(理学版), 2015, 50(12): 109-113.
[11] 饶炎平, 杨刚. Gorenstein弱平坦模[J]. 山东大学学报(理学版), 2015, 50(10): 68-75.
[12] 赵梅梅. S-系的弱拉回平坦性及同调分类[J]. 山东大学学报(理学版), 2015, 50(06): 64-68.
[13] 乔虎生,刘建敏. n-左几乎正则幺半群的平坦性刻画[J]. 山东大学学报(理学版), 2014, 49(2): 4-6.
[14] 陈文静. 关于Gorenstein FP-内射复形[J]. 山东大学学报(理学版), 2014, 49(05): 81-85.
[15] 丰 晓,张顺华* . 左G-正则环[J]. J4, 2007, 42(8): 51-54 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!