您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (7): 53-64.doi: 10.6040/j.issn.1671-9352.0.2021.232

• • 上一篇    

浙江省空气质量变化特征研究——基于函数型数据分析

武祺然,周力凯*,孙金金,王念鸽,余群芳   

  1. 浙江财经大学数据科学学院, 浙江 杭州 310018
  • 发布日期:2021-07-19
  • 作者简介:武祺然(1996— ),男,硕士研究生,研究方向为函数型数据分类. E-mail:wu1996@zufe.edu.cn*通信作者简介:周力凯(1988— ),男,博士,讲师,研究方向为随机过程极限理论及应用. E-mail:lkzhou@zufe.edu.cn
  • 基金资助:
    浙江省自然科学基金资助项目(LQ18A010006);浙江省一流学科A类(浙江财经大学统计学)基金资助项目;浙江财经大学研究生田野调查基金资助项目(20TYDC053)

Research on characteristics of air quality change in Zhejiang Province——based on functional data analysis

WU Qi-ran, ZHOU Li-kai*, SUN Jin-jin, WANG Nian-ge, YU Qun-fang   

  1. School of Data Science, Zhejiang University of Finance and Economics, Hangzhou 310018, Zhejiang, China
  • Published:2021-07-19

摘要: 为了探究浙江省空气质量变化特征,选取浙江省2014—2019 年的空气质量指数月度数据和6项主要空气污染物浓度月度数据进行研究。首先,将空气质量指数数据和6项空气污染物浓度数据拟合为函数曲线;然后,为了发掘浙江省空气质量指数和6项空气污染物浓度的动态变化特征,对空气质量指数曲线族的主成分基系数进行了K-means聚类,并对6项空气污染物浓度曲线族进行了多元Funclust聚类;最后,借助ArcGIS绘制浙江省聚类结果空间分布图,并探索了浙江省空气质量的空间分布特征。结果表明,浙江省空气质量变化特征在空间上可以划分为4类区域,呈现出由南至北逐渐变差的趋势;在时间上,浙江省空气质量指数呈逐年稳步下降趋势,SO2浓度下降明显,其他5项污染物浓度具有明显的相似性和显著的季节性特征。

关键词: 浙江省空气质量, 函数型主成分分析, K-means 聚类, 多元 Funclust 聚类

Abstract: In order to explore the characteristics of air quality changes in Zhejiang Province, this paper selects the monthly air quality index data and the monthly data of the concentration of six major air pollutants in Zhejiang Province from 2014 to 2019 for research. First, this article fits the air quality index data and the six air pollutant concentration data into a function curve. Then, in order to discover the dynamic change characteristics of the air quality index and the concentration of six air pollutants in Zhejiang Province, this paper performs K-means clustering on the principal component basis coefficients of the air quality index curve family, and analyzes the six air pollutant concentration curve families perform multivariate Funclust clustering. Finally, we used ArcGIS to draw the spatial distribution map of the clustering results in Zhejiang Province and explored the spatial distribution characteristics of the air quality in Zhejiang Province. The results show that the characteristics of air quality changes in Zhejiang Province can be divided into 4 types of regions spatially, showing a trend of gradual deterioration from south to north; in terms of time, the air quality index of Zhejiang Province has been steadily decreasing year by year, and the concentration of SO2 has dropped significantly. The concentrations of the other five pollutants have obvious similarities and significant seasonal characteristics.

Key words: Zhejiang Province air quality, functional principal component analysis, K-means clustering, multivariate Funclust clustering

中图分类号: 

  • O212
[1] 梁银双, 刘黎明, 卢媛. 基于函数型数据聚类的京津冀空气污染特征分析[J]. 调研世界, 2017(5):43-48. LIANG Yinshuang, LIU Liming, LU Yuan. Analysis of Beijing-Tianjin-Hebei air pollution characteristics based on functional data clustering[J]. Survey World, 2017(5):43-48.
[2] 郦少将. 基于函数型聚类的浙江省空气污染时空特征分析[J]. 河南教育学院学报(自然科学版),2018, 27(1):19-24. LI Shaojiang. Analysis of spatial and temporal characteristics of air pollution in Zhejiang Province based on functional clustering[J]. Journal of Henan Institute of Education(Natural Science Edition), 2018, 27(1):19-24.
[3] 余晓美, 沈永昌. 中国环境保护重点城市空气质量的动态特征分析[J]. 统计与决策, 2019, 35(11):91-94. YU Xiaomei, SHEN Yongchang. Analysis of the dynamic characteristics of air quality in key environmental protection cities in China[J]. Statistics and Decision, 2019, 35(11):91-94.
[4] 李豫. 基于多元函数型数据聚类的我国城市空气质量时空特征分析[D]. 上海:上海师范大学, 2019. LI Yu. Analysis of temporal and spatial characteristics of urban air quality in my country based on multivariate functional data clustering[D]. Shanghai:Shanghai Normal University, 2019.
[5] 翟宇申. 多元函数型数据聚类及其在空气污染中的应用[D]. 柳州:广西科技大学, 2018. ZHAI Yushen. Multivariate functional data clustering and its application in air pollution[D]. Liuzhou: Guangxi University of Science and Technology, 2018.
[6] IGNACCOLO R, GHIGO S, GIOVENALI E. Analysis of air quality monitoring networks by functional clustering[J]. Environmetrics, 2008, 19(7):672-686.
[7] KOSIOROWSKI D, SZLACHTOWSKA E. K-local median algorithm for functional data in empirical analysis of air pollution data[C] // The 11th Professor Aleksander Zelias International Conference on Modelling and Forecasting of Socio-Economic Phenomena. [S.l.] :[s.n.] , 2017.
[8] MENG Y, LIANG J, CAO F, et al. A new distance with derivative information for functional K-means clustering algorithm[J]. Information Sciences, 2018, 463/464:166-185.
[9] CHEN J H, CHANG Y C, HUNG W L. A self-organizing clustering algorithm for functional data[J]. Communications in Statistics: Simulation and Computation, 2020, 49(5):1237-1263.
[10] 中华人民共和国环境保护部.环境空气质量指数(AQI)技术规定(试行)[Z/OL].( 2012-02-29)[2021-01-01]. https://max.book118.com/html/2017/0415/100471252.shtm. Ministry of Ecology and Environment of the Peoples Republic of China. Ambient air quality index(AQI)technical regulations(Trial)[Z/OL].( 2012-02-29)[2021-01-01]. https://max.book118.com/html/2017/0415/100471252.shtm.
[11] RAMSAY J O, SILVERMAN B W. Functional data analysis[M]. New York: Springer, 2005.
[12] JAMES G, WITTEN D, HASTIE T, et al. An introduction to statistical learning[M]. New York: Springer, 2013.
[13] RAMSAY J, HOOKER G, GRAVES S. Functional data analysis with R and MATLAB[M]. New York: Springer, 2009.
[14] ACQUES J, PREDA C. Funclust: a curves clustering method using functional random variables density approximation[J]. Neurocomputing, 2013, 112:164-171.
[15] JACQUES J, PREDA C. Model-based clustering for multivariate functional data[J]. Computational Statistics & Data Analysis, 2014, 71:92-106.
[16] DELAIGLE A, HALL P, BATHIA N. Componentwise classification and clustering of functional data[J]. Biometrika, 2012, 99(2):299-313.
[1] 李永明,邓绍坚,蒋伟红. END样本下递归密度函数估计的相合性[J]. 山东大学学报(理学版), 2017, 52(11): 54-59.
[2] 梁小林,郭敏,李静. 更新几何过程的参数估计[J]. 山东大学学报(理学版), 2017, 52(8): 53-57.
[3] 许忠好,李天奇. 基于复杂网络的中国股票市场统计特征分析[J]. 山东大学学报(理学版), 2017, 52(5): 41-48.
[4] 胡学平,张红梅. WOD样本下密度函数核估计的收敛性[J]. 山东大学学报(理学版), 2017, 52(4): 21-25.
[5] 任鹏程,徐静,李新民. 风险价值VaR的区间估计[J]. 山东大学学报(理学版), 2017, 52(2): 85-90.
[6] 张明峰, 柳泽慧, 周小双. 响应变量缺失时纵向数据下变系数部分线性测量误差模型的经验似然推断[J]. 山东大学学报(理学版), 2015, 50(11): 127-134.
[7] 高婷婷, 范国良. 多元线性模型中回归系数矩阵的Minimax估计[J]. 山东大学学报(理学版), 2015, 50(06): 33-38.
[8] 武大勇, 李锋. 随机缺失下半参数回归模型的最大经验似然估计[J]. 山东大学学报(理学版), 2015, 50(04): 20-23.
[9] 甘信军, 杨维强. 证据权重方法与信用风险控制[J]. 山东大学学报(理学版), 2014, 49(12): 55-59.
[10] 李述山. 基于尾部样本数据的尾部相关性分析[J]. 山东大学学报(理学版), 2014, 49(12): 49-54.
[11] 王萍莉, 石东洋. Schrödinger方程双线性元的 超收敛分析和外推[J]. 山东大学学报(理学版), 2014, 49(10): 66-71.
[12] 赵培信, 周小双. 线性误差协变量下部分线性模型的约束统计推断[J]. 山东大学学报(理学版), 2014, 49(07): 69-74.
[13] 伍欣叶,吴群英. 混合删失模型中密度函数K-M估计的r-阶相合速度[J]. 山东大学学报(理学版), 2014, 49(1): 105-110.
[14] 张良勇1,2,徐兴忠2,董晓芳1. 基于中位数排序集抽样的区间估计[J]. J4, 2013, 48(12): 107-110.
[15] . 具有AR(2)误差非线性回归模型的联合检验[J]. J4, 2009, 44(7): 38-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!