您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (4): 8-15.doi: 10.6040/j.issn.1671-9352.0.2021.778

• • 上一篇    

球域上传输特征值问题的一种有效的谱逼近

任师贤1,2,安静1*   

  1. 1.贵州师范大学数学科学学院, 贵州 贵阳 550025;2.贵州民族大学数据科学与信息工程学院, 贵州 贵阳 550025
  • 发布日期:2023-03-27
  • 作者简介:任师贤(1987— ),女,博士研究生,讲师,研究方向为偏微分方程数值解. E-mail:renshixianaq@126.com*通信作者简介:安静(1979— ),男,博士,教授,博士生导师,研究方向为偏微分方程数值解. E-mail:aj154@163.com
  • 基金资助:
    国家自然科学基金资助项目(12061023,11961009);贵州省教育厅青年科技人才成长项目(KY[2022]179)

An efficient spectral approximation for the transmission eigenvalue problem in spherical domains

REN Shi-xian1,2, AN Jing1*   

  1. 1. School of Mathematical Sciences, Guizhou Normal University, Guiyang 550025, Guizhou, China 2. School of Data Science and Information Engineering, Guizhou Minzu University, Guiyang 550025, Guizhou, China
  • Published:2023-03-27

摘要: 为了求解球形区域上的内部传输特征值问题,提出一种有效的谱逼近方法。首先,定义一种乘积型Sobolev空间,利用单位球上一类正交多项式构造相应的逼近空间。其次,通过引入一个辅助函数,将原问题转化为一个等价的四阶混合格式,并推导出该四阶混合格式的变分形式及其离散格式。然后,利用投影算子的逼近性质和Babuška-Osborn理论,证明逼近解的误差估计。最后,详细地描述算法的实现过程,并通过一些数值算例验证了算法的收敛性和高精度。

关键词: 传输特征值问题, 谱方法, 误差估计, 数值算法, 球形区域

Abstract: In order to solve the interior transmission eigenvalue problems in a spherical region, an effective spectral approximation method is proposed. Firstly, a product type Sobolev space is defined, and the corresponding approximation space is constructed by using a class of orthogonal polynomials on the unit sphere. Then, by introducing an auxiliary function, the original problem is transformed into an equivalent fourth-order mixed scheme, and the variational form and discrete form of the fourth-order mixed scheme are derived. Moreover, by using the approximation property of the projection operator and Babuška-Osborn theory, the error estimation of approximation solution is proved. Finally, the implementation process of the algorithm is described in detail, and some numerical examples are given to verify the convergence and high accuracy of the algorithm.

Key words: transmission eigenvalue problem, spectral method, error estimation, numerical algorithm, spherical domain

中图分类号: 

  • O241.82
[1] COLTON D, PÄIVÄRINTA L, SYLVESTER J. The interior transmission problem[J]. Inverse Problems and Imaging, 2007, 1(1):13-28.
[2] COLTON D, KRESS R. Inverse acoustic and electromagnetic scattering theory[M]. Berlin: Springer, 1998: 93.
[3] CAKONI F, COLTON D, HADDAR H. On the determination of Dirichlet or transmission eigenvalues from far field data[J]. Comptes Rendus Mathematique, 2010, 348(7/8):379-383.
[4] CAKONI F, COLTON D, MONK P. On the use of transmission eigenvalues to estimate the index of refraction from far field data[J]. Inverse Problems, 2007, 23(2):507-522.
[5] PYNNE B P, SLEEMAN B D. The interior transmission problem and inverse scattering from inhomogeneous media[J]. SIAM Journal on Mathematical Analysis, 1991, 22(6):1755-1762.
[6] PÄIVÄRINTA L, SYLVESTER J. Transmission eigenvalues[J]. SIAM Journal on Mathematical Analysis, 2008, 40(2):738-753.
[7] CAKONI F, HADDAR H. On the existence of transmission eigenvalues in an inhomogeneous medium[J]. Applicable Analysis, 2009, 88(4):475-493.
[8] CAKONI F, GINTIDES D, HADDAR H. The existence of an infinite discrete set of transmission eigenvalues[J]. SIAM Journal on Mathematical Analysis, 2010, 42(1):237-255.
[9] JI X, SUN J G, TURNER T. Algorithm 922: a mixed finite element method for Helmholtz transmission eigenvalues[J]. ACM Transactions on Mathematical Software(TOMS), 2012, 38(4):1-8.
[10] SUN Jiguang. Iterative methods for transmission eigenvalues[J]. SIAM Journal on Numerical Analysis, 2011, 49(5):1860-1874.
[11] CAKONI F, MONK P, SUN J G. Error analysis for the finite element approximation of transmission eigenvalues[J]. Computational Methods in Applied Mathematics, 2014, 14(4):419-427.
[12] AN Jing, LI Huiyuan, ZHANG Zhimin. Spectral-Galerkin approximation and optimal error estimate for biharmonic eigenvalue problems in circular/spherical/elliptical domains[J]. Numerical Algorithms, 2020, 84(2):427-455.
[13] REN Shixian, TAN Ting, AN Jing. An efficient spectral-Galerkin approximation based on dimension reduction scheme for transmission eigenvalues in polar geometries[J].Computers & Mathematics with Applications, 2020, 80(5):940-955.
[14] LI Huiyuan, XU Yuan. Spectral approximation on the unit ball[J]. SIAM Journal on Numerical Analysis, 2014, 52(6):2647-2675.
[15] AN Jing, LUO Zhendong. A high accuracy spectral method based on min/max principle for biharmonic eigenvalue problems on a spherical domain[J]. Journal of Mathematical Analysis and Applications, 2016, 439(1):385-395.
[16] HAN Jiayu, YANG Yidu. An Hm-conforming spectral element method on multi-dimensional domain and its application to transmission eigenvalues[J]. Science China Mathematics, 2017, 60(8):1529-1542.
[1] 李振平,余亚辉. 后验参数软化法求解Helmholtz方程柯西问题[J]. 《山东大学学报(理学版)》, 2023, 58(3): 77-84.
[2] 李维智,李宛珊,李建良. 等离子体模型ADI-FDTD格式的最大模误差估计及外推[J]. 《山东大学学报(理学版)》, 2021, 56(9): 96-110.
[3] 王凤霞,熊向团. 非齐次热方程侧边值问题的拟边值正则化方法[J]. 《山东大学学报(理学版)》, 2021, 56(6): 74-80.
[4] 戚斌,程浩. Neumann边界条件分数阶扩散波方程的源项辨识[J]. 《山东大学学报(理学版)》, 2021, 56(6): 64-73.
[5] 杨彩杰,孙同军. 抛物型最优控制问题的Crank-Nicolson差分方法[J]. 《山东大学学报(理学版)》, 2020, 55(6): 115-121.
[6] 郑瑞瑞,孙同军. 一类捕食与被捕食模型最优控制问题的有限元方法的先验误差估计[J]. 《山东大学学报(理学版)》, 2020, 55(1): 23-32.
[7] 陈雅文,熊向团. 抛物方程非特征柯西问题的分数次Tikhonov方法[J]. 《山东大学学报(理学版)》, 2019, 54(12): 120-126.
[8] 丁凤霞,程浩. 椭圆方程柯西问题磨光正则化参数的后验选取[J]. 山东大学学报(理学版), 2018, 53(2): 18-24.
[9] 于金彪,任永强,曹伟东,鲁统超,程爱杰,戴涛. 可压多孔介质流的扩展混合元解法[J]. 山东大学学报(理学版), 2017, 52(8): 25-34.
[10] 史艳华1,石东洋2*. 伪双曲方程类Wilson非协调元逼近[J]. J4, 2013, 48(4): 77-84.
[11] 吴志勤1,石东伟2. 带弱奇异核非线性积分微分方程的收敛性分析[J]. J4, 2012, 47(8): 60-63.
[12] 李娜,高夫征*,张天德. Sobolev方程的扩展混合体积元方法[J]. J4, 2012, 47(6): 34-39.
[13] 于金彪1,2,席开华3*,戴涛2,鲁统超3,杨耀忠2,任永强3,程爱杰3. 两相多组分流有限元方法的收敛性[J]. J4, 2012, 47(2): 19-25.
[14] 周家全,孙应德,张永胜. Burgers方程的非协调特征有限元方法[J]. J4, 2012, 47(12): 103-108.
[15] 乔保民,梁洪亮. 一类非线性广义神经传播方程Adini元的超收敛分析[J]. J4, 2011, 46(8): 42-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!