《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (4): 8-15.doi: 10.6040/j.issn.1671-9352.0.2021.778
• • 上一篇
任师贤1,2,安静1*
REN Shi-xian1,2, AN Jing1*
摘要: 为了求解球形区域上的内部传输特征值问题,提出一种有效的谱逼近方法。首先,定义一种乘积型Sobolev空间,利用单位球上一类正交多项式构造相应的逼近空间。其次,通过引入一个辅助函数,将原问题转化为一个等价的四阶混合格式,并推导出该四阶混合格式的变分形式及其离散格式。然后,利用投影算子的逼近性质和Babuka-Osborn理论,证明逼近解的误差估计。最后,详细地描述算法的实现过程,并通过一些数值算例验证了算法的收敛性和高精度。
中图分类号:
[1] COLTON D, PÄIVÄRINTA L, SYLVESTER J. The interior transmission problem[J]. Inverse Problems and Imaging, 2007, 1(1):13-28. [2] COLTON D, KRESS R. Inverse acoustic and electromagnetic scattering theory[M]. Berlin: Springer, 1998: 93. [3] CAKONI F, COLTON D, HADDAR H. On the determination of Dirichlet or transmission eigenvalues from far field data[J]. Comptes Rendus Mathematique, 2010, 348(7/8):379-383. [4] CAKONI F, COLTON D, MONK P. On the use of transmission eigenvalues to estimate the index of refraction from far field data[J]. Inverse Problems, 2007, 23(2):507-522. [5] PYNNE B P, SLEEMAN B D. The interior transmission problem and inverse scattering from inhomogeneous media[J]. SIAM Journal on Mathematical Analysis, 1991, 22(6):1755-1762. [6] PÄIVÄRINTA L, SYLVESTER J. Transmission eigenvalues[J]. SIAM Journal on Mathematical Analysis, 2008, 40(2):738-753. [7] CAKONI F, HADDAR H. On the existence of transmission eigenvalues in an inhomogeneous medium[J]. Applicable Analysis, 2009, 88(4):475-493. [8] CAKONI F, GINTIDES D, HADDAR H. The existence of an infinite discrete set of transmission eigenvalues[J]. SIAM Journal on Mathematical Analysis, 2010, 42(1):237-255. [9] JI X, SUN J G, TURNER T. Algorithm 922: a mixed finite element method for Helmholtz transmission eigenvalues[J]. ACM Transactions on Mathematical Software(TOMS), 2012, 38(4):1-8. [10] SUN Jiguang. Iterative methods for transmission eigenvalues[J]. SIAM Journal on Numerical Analysis, 2011, 49(5):1860-1874. [11] CAKONI F, MONK P, SUN J G. Error analysis for the finite element approximation of transmission eigenvalues[J]. Computational Methods in Applied Mathematics, 2014, 14(4):419-427. [12] AN Jing, LI Huiyuan, ZHANG Zhimin. Spectral-Galerkin approximation and optimal error estimate for biharmonic eigenvalue problems in circular/spherical/elliptical domains[J]. Numerical Algorithms, 2020, 84(2):427-455. [13] REN Shixian, TAN Ting, AN Jing. An efficient spectral-Galerkin approximation based on dimension reduction scheme for transmission eigenvalues in polar geometries[J].Computers & Mathematics with Applications, 2020, 80(5):940-955. [14] LI Huiyuan, XU Yuan. Spectral approximation on the unit ball[J]. SIAM Journal on Numerical Analysis, 2014, 52(6):2647-2675. [15] AN Jing, LUO Zhendong. A high accuracy spectral method based on min/max principle for biharmonic eigenvalue problems on a spherical domain[J]. Journal of Mathematical Analysis and Applications, 2016, 439(1):385-395. [16] HAN Jiayu, YANG Yidu. An Hm-conforming spectral element method on multi-dimensional domain and its application to transmission eigenvalues[J]. Science China Mathematics, 2017, 60(8):1529-1542. |
[1] | 李振平,余亚辉. 后验参数软化法求解Helmholtz方程柯西问题[J]. 《山东大学学报(理学版)》, 2023, 58(3): 77-84. |
[2] | 李维智,李宛珊,李建良. 等离子体模型ADI-FDTD格式的最大模误差估计及外推[J]. 《山东大学学报(理学版)》, 2021, 56(9): 96-110. |
[3] | 王凤霞,熊向团. 非齐次热方程侧边值问题的拟边值正则化方法[J]. 《山东大学学报(理学版)》, 2021, 56(6): 74-80. |
[4] | 戚斌,程浩. Neumann边界条件分数阶扩散波方程的源项辨识[J]. 《山东大学学报(理学版)》, 2021, 56(6): 64-73. |
[5] | 杨彩杰,孙同军. 抛物型最优控制问题的Crank-Nicolson差分方法[J]. 《山东大学学报(理学版)》, 2020, 55(6): 115-121. |
[6] | 郑瑞瑞,孙同军. 一类捕食与被捕食模型最优控制问题的有限元方法的先验误差估计[J]. 《山东大学学报(理学版)》, 2020, 55(1): 23-32. |
[7] | 陈雅文,熊向团. 抛物方程非特征柯西问题的分数次Tikhonov方法[J]. 《山东大学学报(理学版)》, 2019, 54(12): 120-126. |
[8] | 丁凤霞,程浩. 椭圆方程柯西问题磨光正则化参数的后验选取[J]. 山东大学学报(理学版), 2018, 53(2): 18-24. |
[9] | 于金彪,任永强,曹伟东,鲁统超,程爱杰,戴涛. 可压多孔介质流的扩展混合元解法[J]. 山东大学学报(理学版), 2017, 52(8): 25-34. |
[10] | 史艳华1,石东洋2*. 伪双曲方程类Wilson非协调元逼近[J]. J4, 2013, 48(4): 77-84. |
[11] | 吴志勤1,石东伟2. 带弱奇异核非线性积分微分方程的收敛性分析[J]. J4, 2012, 47(8): 60-63. |
[12] | 李娜,高夫征*,张天德. Sobolev方程的扩展混合体积元方法[J]. J4, 2012, 47(6): 34-39. |
[13] | 于金彪1,2,席开华3*,戴涛2,鲁统超3,杨耀忠2,任永强3,程爱杰3. 两相多组分流有限元方法的收敛性[J]. J4, 2012, 47(2): 19-25. |
[14] | 周家全,孙应德,张永胜. Burgers方程的非协调特征有限元方法[J]. J4, 2012, 47(12): 103-108. |
[15] | 乔保民,梁洪亮. 一类非线性广义神经传播方程Adini元的超收敛分析[J]. J4, 2011, 46(8): 42-46. |
|