您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (5): 1-9.doi: 10.6040/j.issn.1671-9352.4.2022.3841

• •    

一类由一致模与模糊否定构造的新模糊蕴涵——(N,U)-蕴涵

于鹏*,李冉冉   

  1. 陕西科技大学数学与数据科学学院, 陕西 西安 710021
  • 发布日期:2023-05-15
  • 作者简介:于鹏(1981— ),男,博士,副教授,研究方向为近似推理、非经典数理逻辑和粗糙集. E-mail:yupeng@sust.edu.cn*通信作者
  • 基金资助:
    国家自然科学基金资助项目(12171294);陕西科技大学博士科研启动基金项目(2019BJ-41)

(N,U)-implication: a kind of new fuzzy implication constructed by uninorms and fuzzy negation

YU Peng*, LI Ranran   

  1. School of Mathematics and Data Sciences, Shaanxi University of Science and Technology, Xian 710021, Shaanxi, China
  • Published:2023-05-15

摘要: 在(U,N)-蕴涵的基础上,从经典蕴涵算子p→q=p∨q的对偶形式p→q=(p∧q)出发,用合取一致模U取代(p∧q)中的∧运算,用一般模糊否定N取代(p∧q)中的运算,生成了一类新的模糊蕴涵,称为(N,U)-蕴涵。(N,U)-蕴涵是一类不同于(U,N)-蕴涵的蕴涵算子,与(U,N)-蕴涵形成了互补,丰富了蕴涵算子的生成方法。

关键词: 一致模, 模糊蕴涵, 模糊否定, (U,N)-蕴涵, 三角模

Abstract: Based on the duality principle and(U,N)-implication, we construct a new type of fuzzy implication, named(N,U)-implication, which is obtained by replacing ∧ and  operators with conjunctive uninorms and general fuzzy negations in the formula p→q=(p∧q)in classical logic system.(N,U)-implication differs from the(U,N)-implication, and can be considered its complement to a certain extent thus enriching the pool of the generating methods for fuzzy implications.

Key words: uninorms, fuzzy implication, fuzzy negation, (U,N)-implication, triangular norms

中图分类号: 

  • O144
[1] BACZYNSKI M, JAYARAM B. Fuzzy implication[M]. Berlin: Springer, 2008: 1-10.
[2] BACZYNSKI M, BELIAKOV G. Advances in fuzzy implication function[M]. Berlin: Springer, 2013: 1-8.
[3] BACZYNSKI M, JAYARAM B. Yagers classes of fuzzy implications: some properties and intersectionns[J]. Kybernetika, 2007(43):157-182.
[4] SU Yong, LIU Huawen, WITOLD Pedrycz. A method to construct fuzzy implications rotation construction[J]. International Journal of Approximate Reasoning, 2018, 92:20-31.
[5] BACZYNSKI M, JAYARAM B. (U,N)-implications and their characterizations[J]. Fuzzy Sets and Systems, 2009, 160:2049-2062.
[6] LIU Huawen. Semi-uninorms and implications on a complete lattice[J]. Fuzzy Sets and Systems, 2012, 191:72-82.
[7] ZHOU Hongjun, LIU Xiao. Characterizations of (U2,N)-implications generated by 2-uninorms and fuzzy negations from the point of view of material implication[J]. Fuzzy Sets and Systems, 2020, 378:79-102.
[8] DIMURO G P, BEDREGAl B, SANTIAGO R H. On (G,N)-implications derived from grouping functions[J]. Information Sciences, 2014, 279:1-17.
[9] QIAO Junsheng, HU Baoqing. The distributive laws of fuzzy implications over overlap and grouping functions[J]. Information Sciences, 2018, 438:107-126.
[10] BACZYNSKI M, GRZEGORZEWSKI D, MESIAR R, et al. Fuzzy implications based on semicopulas[J]. Fuzzy Sets and Systems, 2017, 323:138-151.
[11] PAIVA R, BEDREGAL B, SANTIAGO R, et al. Residuated implications derived from quasi-overlap functions on lattices[J]. International Journal of Approximate Reasoning, 2021, 134:95-110.
[12] DELIMA A, BEDREGAL B, MEZZOMO I. Ordinal sums of the main classes of fuzzy negations and the natural negations of t-norms, t-conorms and fuzzy implications[J]. International Journal of Approximate Reasoning, 2020, 116:19-32.
[13] CAO Meng, HU Baoqing. On the ordinal sum of fuzzy implications: new results and the distributivity over a class of overlap and grouping functions[J]. Fuzzy Sets and Systems, 2022, 446:93-123.
[14] 刘晓,周红军.(O,N)-蕴涵及其刻画[J].山东大学学报(理学版),2019, 54(5):99-111. LIU Xiao, ZHOU Hongjun.(O,N)-implication and its characterization[J]. Journal of Shandong University(Natural Science), 2019, 54(5):99-111.
[15] KLEMENT E P, MESIAR R, PAP E. Triangular norms[M]. Berlin: Springer, 2000.
[16] 覃锋. 聚合函数及其应用[M]. 北京:科学出版社,2019:13-17 QIN Feng. Aggregate functions and its applications[M]. Beijing: Science Press, 2019:13-17.
[17] AGUILÓ I, SU(~overN)ER J, TORRENS J. How to modify a fuzzy implication function to satisfy a desired property[J]. International Journal of Approximate Reasoning, 2018, 103:168-183.
[18] VEMURI N R. Investigations of fuzzy implications satisfying generalized hypothetical syllogism[J]. Fuzzy Sets and Systems, 2017, 323:117-137.
[19] BACZYNSKI M, JAYARAM B, MESIAR R. Fuzzy implications:alpha migrativity and generalised laws of importation[J]. Information Sciences, 2020, 531:87-96.
[20] MAS M, MONSERRAT M, TORRENS J. A characterization of(U,N), RU, QL and D-implications derived from uninorms satisfying the law of importation[J]. Fuzzy Sets and Systems, 2010, 161(10):1369-1387.
[21] ZHANG Tinghai, QIN Feng. On distributive laws between uninorms and overlap(grouping)function[J]. International Journal of Approximate Reasoning, 2020, 119:353-372.
[22] PINHEIRO J, BEDREGAL B, SANTIAGO R H N, et al. A study of (T,N)-implications and its use to construct a new class of fuzzy subsethood measure[J]. International Journal of Approximate Reasoning, 2018, 97:1-16.
[1] 苏晓艳,陈京荣,尹会玲. 广义区间值Pythagorean三角模糊集成算子及其决策应用[J]. 《山东大学学报(理学版)》, 2022, 57(8): 77-87.
[2] 赵双燕,吴家超. 模糊论辩框架哥德尔语义的数值特征[J]. 《山东大学学报(理学版)》, 2022, 57(8): 53-59.
[3] 李星宇,段景瑶. 基于三角模的直觉相似度及其应用[J]. 《山东大学学报(理学版)》, 2022, 57(4): 37-47.
[4] 赵卫利,周红军. 一类S-一致模与几种聚合算子间的模方程[J]. 《山东大学学报(理学版)》, 2020, 55(5): 55-70.
[5] 张廷海,覃锋. 基于重叠函数和分组函数的蕴涵分配性[J]. 《山东大学学报(理学版)》, 2019, 54(9): 36-42.
[6] 程亚菲,赵彬. 模糊蕴涵关于合取2-一致模满足输入律的刻画[J]. 《山东大学学报(理学版)》, 2019, 54(8): 20-32.
[7] 刘晓,周红军. (O,N)-蕴涵及其刻画[J]. 《山东大学学报(理学版)》, 2019, 54(5): 99-111.
[8] 宋一凡,赵彬. 2-一致模基于重叠函数的(α,O)-迁移性[J]. 《山东大学学报(理学版)》, 2019, 54(11): 97-107.
[9] 彭家寅. 剩余格上的落影模糊滤子[J]. 山东大学学报(理学版), 2018, 53(2): 52-64.
[10] 于俊红,周红军. (T,N)-蕴涵及其基本性质[J]. 山东大学学报(理学版), 2017, 52(11): 71-81.
[11] 韩亮,刘华文. 有限链上逻辑算子的分配性方程求解[J]. 山东大学学报(理学版), 2014, 49(2): 29-35.
[12] 巩增泰,齐颖. 基于Archimedean三角模的广义直觉模糊不确定语言变量集成方法[J]. J4, 2013, 48(3): 53-63.
[13] 郝加兴,吴洪博. 基于非交换剩余格的模糊蕴涵滤子及其性质[J]. J4, 2010, 45(10): 61-65.
[14] 宋佳,罗敏楠,李永明. 区间值三角模左连续的充要条件[J]. J4, 2009, 44(3): 67-70 .
[15] 刘培德,张 新 . 建筑企业融资方案模糊多目标评价研究[J]. J4, 2008, 43(11): 22-26 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!