《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (10): 106-121.doi: 10.6040/j.issn.1671-9352.0.2022.666
摘要:
考虑鸟类流动性和环境异质性, 建立具有不完全接种的反应扩散禽流感模型, 研究鸟类中禽流感的传播动态。首先证明模型解的全局存在性, 其次利用下一代算子的谱半径方法计算模型的基本再生数, 分析模型的阈值动力学。此外, 考虑疫苗对鸟类起到100%预防作用的情况, 给出基本再生数和主特征值的显式表达式, 研究了病毒的灭绝和持续性。最后进行数值模拟, 分析禽流感的传播动力学并研究禽流感爆发的有效控制策略。结果表明, 提高鸟类接种疫苗的覆盖率, 及时对环境进行消毒, 清除环境中的禽流感病毒, 减少鸟类流动性对控制禽流感的传播是非常有效的。
中图分类号:
1 |
KIM K I , LIN Zhigui , ZHANG Lai . Avian-human influenza epidemic model with diffusion[J]. Nonlinear Analysis: Real World Applications, 2010, 11 (1): 313- 322.
doi: 10.1016/j.nonrwa.2008.11.015 |
2 |
IWAMI S , TAKEUCHI Y , LIU Xianning . Avian-human influenza epidemic model[J]. Mathematical Biosciences, 2007, 207 (1): 1- 25.
doi: 10.1016/j.mbs.2006.08.001 |
3 |
MORGAN I R , KELLY A P . Epidemiology of an avian influenza outbreak in Victoria in 1985[J]. Australian Veterinary Journal, 1990, 67 (4): 125- 128.
doi: 10.1111/j.1751-0813.1990.tb07727.x |
4 |
SWAYNE D E . Pathobiology of H5N2 Mexican avian influenza virus infections of chickens[J]. Veterinary Pathology, 1997, 34 (6): 557- 567.
doi: 10.1177/030098589703400603 |
5 |
ZANELLA A , DALL'ARA P , MARTINO P A . Avian influenza epidemic in Italy due to serovar H7N1[J]. Avian Diseases, 2001, 45 (1): 257- 261.
doi: 10.2307/1593038 |
6 |
MA Xinling , WANG Wendi . A discrete model of avian influenza with seasonal reproduction and transmission[J]. Journal of Biological Dynamics, 2010, 4 (3): 296- 314.
doi: 10.1080/17513751003793009 |
7 |
VAIDYA N K , WANG Fengbin , ZOU Xingfu . Avian influenza dynamics in wild birds with bird mobility and spatial heterogeneous environment[J]. Discrete and Continuous Dynamical Systems: Series B, 2012, 17 (8): 2829- 2848.
doi: 10.3934/dcdsb.2012.17.2829 |
8 |
VAIDYA N K , WAHL L M . Avian influenza dynamics under periodic environmental conditions[J]. SIAM Journal on Applied Mathematics, 2015, 75 (2): 443- 467.
doi: 10.1137/140966642 |
9 |
ZHENG Tingting , NIE Linfei , ZHU Huaiping , et al. Role of seasonality and spatial heterogeneous in the transmission dynamics of avian influenza[J]. Nonlinear Analysis: Real World Applications, 2022, 67, 103567.
doi: 10.1016/j.nonrwa.2022.103567 |
10 |
GULBUDAK H , MARTCHEVA M . A structured avian influenza model with imperfect vaccination and vaccine-induced asymptomatic infection[J]. Bulletin of Mathematical Biology, 2014, 76 (10): 2389- 2425.
doi: 10.1007/s11538-014-0012-1 |
11 | BROWN J D , SWAYNE D E , COOPER R J , et al. Persistence of H5 and H7 avian influenza viruses in water[J]. Avian Diseases, 2007, 51 (Suppl.1): 285- 289. |
12 | LU H , CASTRO A E , PENNICK K , et al. Survival of avian influenza virus H7N2 in SPF chickens and their environments[J]. Avian Diseases, 2003, 47 (Suppl.3): 1015- 1021. |
13 |
HINSHAW V S , WEBSTER R G , TURNER B . Water-borne transmission of influenza A viruses?[J]. Intervirology, 1979, 11 (1): 66- 68.
doi: 10.1159/000149014 |
14 | SMITH H L. Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems[M]. Providence: American Mathematical Society, 1995. |
15 | MARTIN R H , SMITH H L . Abstract functional-differential equations and reaction-diffusion systems[J]. Transactions of the American Mathematical Society, 1990, 321 (1): 1- 44. |
16 |
LOU Yijun , ZHAO Xiaoqiang . A reaction-diffusion malaria model with incubation period in the vector population[J]. Journal of Mathematical Biology, 2011, 62 (4): 543- 568.
doi: 10.1007/s00285-010-0346-8 |
17 |
WU Yixiang , ZOU Xingfu . Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates[J]. Journal of Differential Equations, 2018, 264 (8): 4989- 5024.
doi: 10.1016/j.jde.2017.12.027 |
18 |
MAGAL P , ZHAO Xiaoqiang . Global attractors and steady states for uniformly persistent dynamical systems[J]. SIAM Journal on Mathematical Analysis, 2005, 37 (1): 251- 275.
doi: 10.1137/S0036141003439173 |
19 |
JIANG Jifa , LIANG Xing , ZHAO Xiaoqiang . Saddle-point behavior for monotone semiflows and reaction-diffusion models[J]. Journal of Differential Equations, 2004, 203 (2): 313- 330.
doi: 10.1016/j.jde.2004.05.002 |
20 | HESS P. Periodic-parabolic boundary value problems and positivity[M]//Pitman Search Notes in Mathematics Series, Vol. 247, Harlow: Longman Scientific Technical, 1991. |
21 |
THIEME H R . Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity[J]. SIAM Journal on Applied Mathematics, 2009, 70 (1): 188- 211.
doi: 10.1137/080732870 |
22 |
WANG Wendi , ZHAO Xiaoqiang . A nonlocal and time-delayed reaction-diffusion model of dengue transmission[J]. SIAM Journal on Applied Mathematics, 2011, 71 (1): 147- 168.
doi: 10.1137/090775890 |
23 |
WANG Wendi , ZHAO Xiaoqiang . Basic reproduction numbers for reaction-diffusion epidemic models[J]. SIAM Journal on Applied Dynamical Systems, 2012, 11 (4): 1652- 1673.
doi: 10.1137/120872942 |
24 | THIEME H R . Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations[J]. Journal of Mathematical Biology, 1992, 30 (7): 755- 763. |
25 | PROTTER M H , WEINBERGER H F . Maximum principles in differential equations[M]. New York: Springer-Verlag, 1984. |
26 |
SMITH H L , ZHAO Xiaoqiang . Robust persistence for semi-dynamical systems[J]. Nonlinear Analysis: Theory, Methods and Applications, 2001, 47 (9): 6169- 6179.
doi: 10.1016/S0362-546X(01)00678-2 |
27 | ALLEN L J S , BOLKER B M , LOU Yuan , et al. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model[J]. Discrete & Continuous Dynamical Systems, 2008, 21 (1): 1- 20. |
28 | WANG Fengbin , SHI Junping , ZOU Xingfu . Dynamics of a host-pathogen system on a bounded spatial domain[J]. Communications on Pure & Applied Analysis, 2015, 14 (6): 2535- 2560. |
[1] | 陈刚,张睿. 一类具有预防接种的两菌株共感模型的传染病动力学分析[J]. 《山东大学学报(理学版)》, 2023, 58(10): 84-96. |
[2] | 李永花,张存华. 具有Dirichlet边界条件的单种群时滞反应扩散模型的稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 122-126. |
[3] | 李晓伟,李桂花. 考虑环境病毒影响的COVID-19模型的动力学性态研究[J]. 《山东大学学报(理学版)》, 2023, 58(1): 10-15. |
[4] | 王艳梅,刘桂荣. 带Markov切换的随机SIQS模型的渐近行为[J]. 《山东大学学报(理学版)》, 2022, 57(6): 84-93. |
[5] | 王非,杨亚莉,金英姬,曹书苗. 具有两个感染阶段和治疗及非线性发生率的HIV/AIDS模型的研究[J]. 《山东大学学报(理学版)》, 2019, 54(10): 67-73. |
[6] | 刘华,叶勇,魏玉梅,杨鹏,马明,冶建华,马娅磊. 一类离散宿主-寄生物模型动态研究[J]. 山东大学学报(理学版), 2018, 53(7): 30-38. |
[7] | 张道祥,胡伟,陶龙,周文. 一类具有不同发生率的双疾病随机SIS传染病模型的动力学研究[J]. 山东大学学报(理学版), 2017, 52(5): 10-17. |
[8] | 董婵, 张菊平, 李有文. 两斑块间具有种群动力学的#br# 疟疾传播模型研究[J]. 山东大学学报(理学版), 2014, 49(06): 74-78. |
[9] | 杨俊仙,徐丽*. 一类具非线性发生率和时滞的SIQS传染病模型的全局稳定性[J]. 山东大学学报(理学版), 2014, 49(05): 67-74. |
[10] | 陈新一. 一类非自治捕食系统的动力学行为[J]. J4, 2013, 48(12): 18-23. |
[11] | . 一个具有BeddingtonDeAngelis功能反应项的捕食-食饵反应扩散模型的全局渐近稳定性[J]. J4, 2009, 44(6): 75-78. |
[12] | . 一类新的含有垂直传染与脉冲免疫的SIR传染病模型的定性分析[J]. J4, 2009, 44(5): 67-73. |
|