《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (11): 15-26.doi: 10.6040/j.issn.1671-9352.0.2022.317
Cuiyun ZHANG(),Jingjun GUO*(),Aiqin MA
摘要:
主要研究由次分数布朗运动驱动的Vasicek模型的统计分析问题。首先, 基于离散观测, 用最小二乘估计方法给出Vasicek模型中漂移参数μ和θ的估计值; 其次, 对于θ≠0和θ=0的情况, 分别得到估计值的一致性和渐近分布; 最后, 用Monte Carlo法进行模拟, 证明估计值的无偏性和有效性
中图分类号:
1 |
VASICEK O . An equilibrium characterization of the term structure[J]. Journal of Financial Economics, 1977, 5 (2): 177- 188.
doi: 10.1016/0304-405X(77)90016-2 |
2 | PRAKASA-RAO B L S . Statistical inference from sampled data for stochastic processes[J]. Contemp Math, 1988, 80, 249- 284. |
3 |
VALDIVIESO L , SCHOUTENS W , TUERLINCKX F . Maximum likelihood estimation inprocesses of Ornstein-Uhlenbeck type[J]. Statistical Inference for Stochastic Processes, 2009, 12 (1): 1- 19.
doi: 10.1007/s11203-008-9021-8 |
4 |
ZHANG Pu , XIAO Weilin , ZHANG Xili , et al. Parameter identification for fractional Ornstein-Uhlenbeck processes based on discrete observation[J]. Economic Modelling, 2014, 36, 198- 203.
doi: 10.1016/j.econmod.2013.09.004 |
5 |
ZHANG Shibin , ZHANG Xinsheng . A least squares estimator for discretely observed Ornstein-Uhlenbeck processes driven by symmetric α-stable motions[J]. Annals of the Institute of Statistical Mathematics, 2013, 65 (1): 89- 103.
doi: 10.1007/s10463-012-0362-0 |
6 |
SHEN Guangjun , WANG Qinbo , YIN Xiuwei . Parameter estimation for the discretely observed Vasicek model with small fractional Lévy noise[J]. Acta Mathematica Sinica (English Series), 2020, 36 (4): 443- 461.
doi: 10.1007/s10114-020-9121-y |
7 | BOJDECKI T , GOROSTIZA L G , TALARCAYK A . Sub-fractional Brownian motion and its relation to occupation times[J]. Statistics & Probability Letters, 2004, 69 (4): 405- 419. |
8 |
MENDY I . Parametric estimation for sub-fractional Ornstein-Uhlenbeck process[J]. Journal of Statistical Planning and Inference, 2013, 143 (4): 663- 674.
doi: 10.1016/j.jspi.2012.10.013 |
9 |
KUANG Nenghui , XIE Huantian . Maximum likelihood estimator for the sub-fractional Brownian motion approximated by a random walk[J]. Annals of the Institute of Statistical Mathematics, 2015, 67 (1): 75- 91.
doi: 10.1007/s10463-013-0439-4 |
10 |
LI Shengfeng , DONG Yi . Parametric estimation in the Vasicek-type model driven by sub-fractional Brownian motion[J]. Algorithms, 2018, 11 (12): 197- 215.
doi: 10.3390/a11120197 |
11 |
XIAO Weilin , ZHANG Xili , ZUO Ying . Least squares estimation for the drift parameters in the sub-fractional Vasicek processes[J]. Journal of Statistical Planning and Inference, 2018, 197, 141- 155.
doi: 10.1016/j.jspi.2018.01.003 |
12 | 申广君, 何坤, 闫理坦. 次分数布朗运动的几点注记[J]. 山东大学学报(理学版), 2011, 46 (3): 102- 108. |
SHEN Guangjun , HE Kun , YAN Litan . Remarks on sub-fractional Brownian motion[J]. Journal of Shandong University (Natural Science), 2011, 46 (3): 102- 108. | |
13 |
TUDOR C . Some properties of the sub-fractional Brownian motion[J]. Stochastics An International Journal of Probability and Stochastic Processes, 2007, 79 (5): 431- 448.
doi: 10.1080/17442500601100331 |
[1] | 冯雪,耿生玲,李永明. 加权犹豫模糊偏好关系及其在群体决策中的应用[J]. 《山东大学学报(理学版)》, 2023, 58(3): 39-47. |
[2] | 邱进鹏,李宗刚,陈引娟,杜亚江. 高阶时滞多智能体系统的固定时间一致性控制[J]. 《山东大学学报(理学版)》, 2023, 58(12): 167-176. |
[3] | 张诗苗,吕艳. 带Lévy噪声的Lotka-Volterra竞争模型的参数估计[J]. 《山东大学学报(理学版)》, 2023, 58(10): 24-31. |
[4] | 安翔,郭精军. 混合次分数跳扩散模型下回望期权的定价及模拟[J]. 《山东大学学报(理学版)》, 2022, 57(4): 100-110. |
[5] | 彭波,郭精军. 在跳环境和混合高斯过程下的资产定价及模拟[J]. 《山东大学学报(理学版)》, 2020, 55(5): 105-113. |
[6] | 王亚军,张申,胡青松,刘峰,张玉婷. 具有测量噪声的时滞多智能体系统的一致性问题[J]. 山东大学学报(理学版), 2017, 52(1): 74-80. |
[7] | 葛美侠, 李莹, 赵建立, 邢海云. 网络演化博弈的策略一致性[J]. 山东大学学报(理学版), 2015, 50(11): 113-118. |
[8] | 邓龙娟, 祝东进, 申广君. 赋权分数布朗运动的幂变差与应用[J]. 山东大学学报(理学版), 2015, 50(06): 19-26. |
[9] | 吕淑玲1,侍红军2,刘峰2. 主从多智能体网络快速随机一致性[J]. 山东大学学报(理学版), 2014, 49(1): 65-70. |
[10] | 李锋1,卢一强2. 部分线性模型的LASSO估计及其渐近性[J]. J4, 2012, 47(3): 93-97. |
[11] | 刘谢进1, 缪柏其2. 平衡损失函数下Bayes线性无偏最小方差估计的优良性[J]. J4, 2011, 46(11): 89-95. |
[12] | 周小双1,2. 错误先验指定下Bayes估计与广义最小二乘估计的相对效率[J]. J4, 2010, 45(9): 70-73. |
[13] | 王潜平,杨 婧,管廷昭 . 移动数据库客户端缓存一致性的分析研究[J]. J4, 2007, 42(11): 53-58 . |
[14] | 胡 钢,冯向前,魏翠萍,李宗植 . 区间数判断矩阵满意一致性递推排序方法研究[J]. J4, 2007, 42(11): 89-93 . |
|