《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (9): 52-61.doi: 10.6040/j.issn.1671-9352.0.2024.024
• • 上一篇
刘魏岩,齐迹*,梁红,林钰川
LIU Weiyan, QI Ji*, LIANG Hong, LIN Yuchuan
摘要: 为了提高鹈鹕优化算法的优化性能与稳定性,提出一种基于混合策略的鹈鹕优化算法。在鹈鹕算法备选解的生成机制中使用偏好权重策略,引导备选解进行多样性的探索。采用随机搜索策略更新部分目标函数值较差的备选解位置,使得备选解能够跳出局部最优限制。使用大范围的自适应搜索半径策略,增大各备选解发现更优解的可能。在18个测试函数上结合对比算法开展寻优实验,分析寻优结果并进行Wilcoxon秩和检验,验证了改进后的鹈鹕优化算法具有更好的寻优性能与稳定性。
中图分类号:
[1] ZHANG Xinming, WANG Doudou, CHEN Haiyan. Improved biogeography-based optimization algorithm and its application to clustering optimization and medical image segmentation[J]. IEEE Access, 2019, 7:28810-28825. [2] WANG Zhaoxia, PEN Haibo, YANG Ting, et al. Structure-priority image restoration through genetic algorithm optimization[J]. IEEE Access, 2020, 8:90698-90708. [3] XIONG Xin, HU Xi, GUO Huan. A hybrid optimized grey seasonal variation index model improved by whale optimization algorithm for forecasting the residential electricity consumption[J]. Energy, 2021, 234:121127. [4] GUERRAICHE K, DEKHICI L, CHATELET E, et al. Multi-objective electrical power system design optimization using a modified bat algorithm[J]. Energies, 2021, 14:3956. [5] 张金珂,张建刚. 基于改进粒子群优化算法的信号检测及故障诊断[J]. 山东大学学报(理学版),2023,58(5):63-75,83. ZHANG Jinke, ZHANG Jiangang. Signal detection and fault diagnosis based on improved particle swarm optimization algorithm[J]. Journal of Shandong University(Natural Science), 2023, 58(5):63-75, 83. [6] 行鸿彦,韩杰,刘刚. 混沌变步长萤火虫优化的随机共振微弱信号检测[J]. 探测与控制学报,2019,41(1):64-70. XING Hongyan, HAN Jie, LIU Gang. Chaotic variable step glowworm swarm optimization stochastic resonance for weak signal detection[J]. Journal of Detection & Control, 2019, 41(1):64-70. [7] CHALLAB J M, MARDUKHI F. Ant colony optimization-rain optimization algorithm based on hybrid deep learning for diagnosis of lung involvement in coronavirus patients[J]. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2023, 47:887-902. [8] RERE LMR, FANANY M I, ARYMURTHY A M. Simulated annealing algorithm for deep learning[J]. Procedia Computer Science, 2015, 72:137-144. [9] 纪延峰. 改进的萤火虫算法及其在多约束环境下的排课问题研究[D]. 南昌:江西财经大学,2022:44-55. JI Yanfeng. Research on improved firefly algorithm and its course problem in multi-constraint environment[D]. Nanchang: Jiangxi University of Finance and Economics, 2022:44-55. [10] 刘明. 智能算法在实验教学排课中的应用[J]. 实验技术与管理,2021,38(7):244-247. LIU Ming. Application of intelligent algorithm in experimental course arrangement[J]. Experimental Technology and Management, 2021, 38(7):244-247. [11] 李安东,刘升. 混合策略改进鲸鱼优化算法[J]. 计算机应用研究,2022,39(5):1415-1421. LI Andong, LIU Sheng. Multi-strategy improved whale optimization algorithm[J]. Application Research of Computers, 2022, 39(5):1415-1421. [12] 李建伟,于广滨. 改进麻雀搜索算法的轮毂减速器优化设计[J]. 哈尔滨理工大学学报,2022,27(5):56-63. LI Jianwei, YU Guangbin. Optimization design of hub reducer based on improved sparrow search algorithm[J]. Journal of Harbin University of Science and Technology, 2022, 27(5):56-63. [13] 耿召里,李目,曹淑睿,等. 基于混合反向学习策略的鲸鱼优化算法[J]. 计算机工程与科学,2022,44(2):355-363. GENG Zhaoli, LI Mu, CAO Shurui, et al. A whale optimization algorithm based on hybrid reverse learning strategy[J]. Computer Engineering & Science, 2022, 44(2):355-363. [14] 贾鹤鸣,陈丽珍,力尚龙,等. 透镜成像反向学习的精英池侏儒猫鼬优化算法[J]. 计算机工程与应用,2023,59(24):131-139. JIA Heming, CHEN Lizhen, LI Shanglong, et al. Optimization algorithm of elite pool dwarf mongoose based on lens imaging reverse learning[J]. Computer Engineering and Applications, 2023, 59(24):131-139. [15] 秦宏伍,王立铮,傅渝,等. 基于多策略结合的灰狼优化算法及应用[J]. 山东大学学报(理学版),2024,59(3):51-60. QIN Hongwu, WANG Lizheng, FU Yu, et al. Grey wolf optimization algorithm based on multi-strategy combination and its application[J]. Journal of Shandong University(Natural Science), 2024, 59(3):51-60. [16] 周鹏,董朝轶,陈晓艳,等. 基于Tent混沌和透镜成像学习策略的平衡优化器算法[J]. 控制与决策,2023,38(6):1569-1576. ZHOU Peng, DONG Chaoyi, CHEN Xiaoyan, et al. An equilibrium optimizer algorithm based on a tent chaos and lens imaging learning strategy[J]. Control and Decision, 2023, 38(6):1569-1576. [17] 闫晓斌,方洋旺,彭维仕. 基于自适应高斯变异的多目标哈里斯鹰优化算法[J]. 北京航空航天大学学报,2024,50(8):2636-2645. YAN Xiaobin, FANG Yangwang, PENG Weishi. Multi-objective Harris Hawk optimization algorithm based on adaptive gaussian mutation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(8):2636-2645. [18] 李大海,熊文清,王振东. 融合多策略的增强海鸥优化算法[J]. 计算机应用研究,2023,40(3):717-724. LI Dahai, XIONG Wenqing, WANG Zhendong. Enhancing seagull optimization algorithm by applying multiple strategies[J]. Application Research of Computers, 2023, 40(3):717-724. [19] 付小朋,王勇,冯爱武. 采用混合搜索策略的阿奎拉优化算法[J]. 计算机应用研究,2022,39(10):3026-3032. FU Xiaopeng, WANG Yong, FENG Aiwu. Aquila optimization algorithm using hybrid search strategies[J]. Application Research of Computers, 2022, 39(10):3026-3032. [20] 王筱薇,范勤勤,王维莉. 基于基因水平多样性的微种群教与学优化算法[J]. 计算机应用研究,2021,38(4):1097-1101. WANG Xiaowei, FAN Qinqin, WANG Weili. Micro-population teaching-learning-based optimization based on gene level diversity[J]. Application Research of Computers, 2021, 38(4):1097-1101. [21] TROJOVSKY P, DEHGHANI M. Pelican optimization algorithm: a novel nature-inspired algorithm for engineering applications[J]. Sensors, 2022, 22:855. |
[1] | 田径,龚家豪. 单缀严格语言的组合性质及代数特征[J]. 《山东大学学报(理学版)》, 2024, 59(6): 91-97, 107. |
[2] | 王丽,李敬文,杨文珠,裴华艳. 单圈图的邻点可约全标号[J]. 《山东大学学报(理学版)》, 2024, 59(6): 44-55. |
[3] | 秦宏伍,王立铮,傅渝,隋沐翾,何秉高. 基于多策略结合的灰狼优化算法及应用[J]. 《山东大学学报(理学版)》, 2024, 59(3): 51-60. |
[4] | 李平,杨巨芳,杨艳萍. 非确定型模糊有限自动机的一种新的极小确定化方法[J]. 《山东大学学报(理学版)》, 2024, 59(1): 56-61. |
[5] | 罗兴隆,贺兴时,周洁,杨新社. 基于非洲秃鹫优化算法改进的密度峰值聚类[J]. 《山东大学学报(理学版)》, 2024, 59(1): 46-55,71. |
[6] | 刘海燕,拓守恒. 求解全局优化问题的一个新的填充函数算法[J]. 《山东大学学报(理学版)》, 2023, 58(7): 80-87. |
[7] | 王海辉,赵路瑶,李平. 非确定模糊有穷自动机的ε-语言逼近[J]. 《山东大学学报(理学版)》, 2021, 56(3): 37-43. |
[8] | 彭家寅. 以十量子纠缠态为信道的循环受控量子隐形传态[J]. 《山东大学学报(理学版)》, 2019, 54(9): 98-104. |
[9] | 彭家寅. 以真五粒子非最大纠缠态为信道的双向受控隐形传态[J]. 《山东大学学报(理学版)》, 2018, 53(12): 105-113. |
[10] | 刘利钊,于佳平,刘健,李俊祎,韩哨兵,许华荣,林怀钏,朱顺痣. 基于量子辐射场的大数据安全存储寻址算法[J]. 山东大学学报(理学版), 2018, 53(7): 65-74. |
[11] | 宋省身,杨岳湘,江宇. 基于单指令级并行的快速求交算法[J]. 山东大学学报(理学版), 2018, 53(3): 54-62. |
[12] | 齐平, 王福成, 王必晴. 一种基于图模型的可信云资源调度算法[J]. 山东大学学报(理学版), 2018, 53(1): 63-74. |
[13] | 朱丹,谢晓尧,徐洋,夏梦婷. 基于云模型与贝叶斯反馈的网络安全等级评估方法[J]. 山东大学学报(理学版), 2018, 53(1): 53-62. |
[14] | 史佩昀,高兴宝. 基于个体强度的自适应差分多目标免疫算法[J]. 山东大学学报(理学版), 2017, 52(11): 1-10. |
[15] | 王峰,曼媛,王幸乐. 基于人工免疫的N最短路径检索算法[J]. 山东大学学报(理学版), 2017, 52(9): 35-40. |
|