您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (11): 134-147.doi: 10.6040/j.issn.1671-9352.0.2023.381

• • 上一篇    

广义矩阵代数上的李三重导子

庄金洪1,陈艳平1,谭宜家2*   

  1. 1.福建商学院信息工程学院, 福建 福州 350102;2.福州大学数学与统计学院, 福建 福州 350108
  • 发布日期:2025-11-11
  • 通讯作者: 谭宜家(1962— ),男,教授,硕士生导师,研究方向为矩阵代数及其应用. E-mail:yjtan62@126.com
  • 作者简介:庄金洪(1982— ),男,讲师,研究方向为矩阵代数及其应用. E-mail:zhuangjh8@163.com
  • 基金资助:
    国家自然科学基金资助项目(11971111);福建省自然科学基金资助项目(2024J01992)

Lie triple derivations on a generalized matrix algebra

ZHUANG Jinhong1, CHEN Yanping1, TAN Yijia2*   

  1. 1. College of Information Engineering, Fujian Business University, Fuzhou 350102, Fujian, China;
    2. School of Mathematics and Statistics, Fuzhou University, Fuzhou 350108, Fujian, China
  • Published:2025-11-11

摘要: 研究广义矩阵代数上零点李三重导子的结构,获得广义矩阵代数上零点李三重导子可表为1个导子、1个奇异Jordan导子和1个中心值映射之和的等价条件。结果推广三角代数的相应结论。

关键词: 广义矩阵代数, 李三重导子, 导子, 奇异Jordan导子

Abstract: The structure of Lie triple derivations at zero point on a generalized matrix algebra is studied,and an equivalent condition for a Lie triple derivation at zero point to be expressed as the sum of a derivation, a singular Jordan derivation and a linear map from the generalized matrix algebra to its center is obtained. Partial results obtained in the paper generalize the corresponding results for triangular algebras.

Key words: generalized matrix algebra, Lie triple derivation, derivation, singular Jordan derivation

中图分类号: 

  • O151.3
[1] XIAO Zhankui, WEI Feng. Commuting mappings of generalized matrix algebras[J]. Linear Algebra and Its Applications, 2010, 433(11/12):2178-2197.
[2] MORITA K. Duality for modules and its applications to the theory of rings with minimum condition[J].Science Reports of the Tokyo Kyoiku Daigaku Section A, 1958, 6:83-142.
[3] DEMEYER F, INGRAHAM E. Separable algebras over commutative rings[M]. NewYork: Springer, 1971.
[4] MCCONNELL J C, ROBSON J C. NoncommutativeNoetherianrings[M]. Providence:American Mathematical Society, 2001.
[5] CHEUNG W S. Lie derivations of triangular algebras[J]. Linear and Multilinear Algebra, 2003, 51(3):299-310.
[6] MIERS C R. Lie triple derivations of von Neumann algebras[J]. Proceedings of the American Mathematical Society, 1978, 71(1):57-57.
[7] BRESAR M. Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings[J]. Transactions of the American Mathematical Society,1993, 335(2):525-546.
[8] JI Peisheng, WANG Lin. Lie triple derivations of TUHF algebras[J]. Linear Algebra and Its Applications, 2005, 403(1):399-408.
[9] LU Fangyan. Lie triple derivations on nest algebras[J]. Mathematische Nachrichten, 2007, 280(8):882-887.
[10] ZHANG Jianhua, WU Baowei, CAO Huaixin. Lie triple derivations of nest algebras[J]. Linear Algebra and Its Applications, 2006, 416(2):559-567.
[11] XIAO Zhankui, WEI Feng. Lie triple derivations of triangular algebras[J]. Linear Algebra and Its Applications, 2012, 437(5):1234-1249.
[12] BENKOVIC D. Lie triple derivations of unital algebras with idempotents[J]. Linear and Multilinear Algebra, 2015, 63(1):141-165.
[13] ASHRAFM, AKHTAR M S. Characterizations of Lie triple derivations on generalized matrix algebras[J]. Communications in Algebra, 2020, 48(9):3651-3660.
[14] LIU Lei. Lie triple derivations on factor von Neumann algebras[J]. Bulletin of the Korean Mathematical Society, 2015, 52(2):581-591.
[15] 白延丽,张建华. 三角代数上Lie三重导子的刻画[J]. 数学学报(中文版), 2017, 60(1):31-38. BAI Yanli, ZHANG Jianhua. Characterizations of Lie triple derivations on triangular algebras[J]. Acta Math Sinica, 2017, 60(1):31-38.
[16] LIU Lei. Lie triple derivations on von Neumann algebras[J]. Chinese Annals of Mathematics(Series B), 2018, 39(5):817-828.
[17] ZHAO Xingpeng. Nonlinear Lie triple derivations by local actions on triangular algebras[J]. Journal of Algebra and Its Applications, 2023, 22(3):1-15.
[18] JACOBSON N. Basic algebra, II[M]. New York: W H Freeman and Company, 1989.
[19] LI Yanbo, WEI Feng. Semi-centralizing maps of generalized matrix algebras[J]. Linear Algebra and Its Applications, 2012, 436(5):1122-1153.
[1] 李昕洋,孙冰,周鑫. 李color代数的双导子[J]. 《山东大学学报(理学版)》, 2025, 60(11): 122-129.
[2] 丁亚洲,王淑娟. W(2)到Kac模的一阶上同调[J]. 《山东大学学报(理学版)》, 2022, 57(12): 71-74.
[3] 费秀海,张海芳. 广义矩阵代数上一类非全局非线性三重高阶可导映射[J]. 《山东大学学报(理学版)》, 2022, 57(10): 97-105.
[4] 马帅英,张建华. 三角代数上的一类非全局高阶可导非线性映射[J]. 《山东大学学报(理学版)》, 2021, 56(2): 48-55.
[5] 张芳娟. 因子von Neumann代数上ξ-斜Jordan可导映射的一个刻画[J]. 《山东大学学报(理学版)》, 2020, 55(7): 32-37.
[6] 白瑞蒲,吴婴丽,侯帅. 8-维3-李代数的Manin Triple[J]. 《山东大学学报(理学版)》, 2019, 54(6): 30-33.
[7] 高仕娟,张建华. 含幂等元的环上的(α,β)-导子的刻画[J]. 《山东大学学报(理学版)》, 2019, 54(4): 1-5.
[8] 高瑞梅,高嘉英,初颖. 变形广义Shi构形的单根基[J]. 《山东大学学报(理学版)》, 2019, 54(2): 66-70.
[9] 费秀海,张建华. 三角代数上关于内导子空间Lie不变的线性映射[J]. 《山东大学学报(理学版)》, 2019, 54(2): 79-83.
[10] 费秀海,戴磊,朱国卫. 三角代数上Lie积为平方零元的非线性Jordan高阶可导映射[J]. 《山东大学学报(理学版)》, 2019, 54(12): 50-58.
[11] 费秀海,戴磊. 广义矩阵代数上双可导映射的可加性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 85-90.
[12] 张霞,张建华. 三角代数上互逆元处的高阶ξ-Lie可导映射[J]. 《山东大学学报(理学版)》, 2019, 54(10): 79-84.
[13] 刘莉君. 布尔代数上triple-δ-导子的特征及性质[J]. 山东大学学报(理学版), 2017, 52(11): 95-99.
[14] 张芳娟. 广义矩阵代数上的非线性Lie中心化子[J]. 山东大学学报(理学版), 2015, 50(12): 10-14.
[15] 李俊, 张建华, 陈琳. 三角Banach代数上的对偶模Jordan导子和对偶模广义导子[J]. 山东大学学报(理学版), 2015, 50(10): 76-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!