《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (11): 134-147.doi: 10.6040/j.issn.1671-9352.0.2023.381
• • 上一篇
庄金洪1,陈艳平1,谭宜家2*
ZHUANG Jinhong1, CHEN Yanping1, TAN Yijia2*
摘要: 研究广义矩阵代数上零点李三重导子的结构,获得广义矩阵代数上零点李三重导子可表为1个导子、1个奇异Jordan导子和1个中心值映射之和的等价条件。结果推广三角代数的相应结论。
中图分类号:
| [1] XIAO Zhankui, WEI Feng. Commuting mappings of generalized matrix algebras[J]. Linear Algebra and Its Applications, 2010, 433(11/12):2178-2197. [2] MORITA K. Duality for modules and its applications to the theory of rings with minimum condition[J].Science Reports of the Tokyo Kyoiku Daigaku Section A, 1958, 6:83-142. [3] DEMEYER F, INGRAHAM E. Separable algebras over commutative rings[M]. NewYork: Springer, 1971. [4] MCCONNELL J C, ROBSON J C. NoncommutativeNoetherianrings[M]. Providence:American Mathematical Society, 2001. [5] CHEUNG W S. Lie derivations of triangular algebras[J]. Linear and Multilinear Algebra, 2003, 51(3):299-310. [6] MIERS C R. Lie triple derivations of von Neumann algebras[J]. Proceedings of the American Mathematical Society, 1978, 71(1):57-57. [7] BRESAR M. Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings[J]. Transactions of the American Mathematical Society,1993, 335(2):525-546. [8] JI Peisheng, WANG Lin. Lie triple derivations of TUHF algebras[J]. Linear Algebra and Its Applications, 2005, 403(1):399-408. [9] LU Fangyan. Lie triple derivations on nest algebras[J]. Mathematische Nachrichten, 2007, 280(8):882-887. [10] ZHANG Jianhua, WU Baowei, CAO Huaixin. Lie triple derivations of nest algebras[J]. Linear Algebra and Its Applications, 2006, 416(2):559-567. [11] XIAO Zhankui, WEI Feng. Lie triple derivations of triangular algebras[J]. Linear Algebra and Its Applications, 2012, 437(5):1234-1249. [12] BENKOVIC D. Lie triple derivations of unital algebras with idempotents[J]. Linear and Multilinear Algebra, 2015, 63(1):141-165. [13] ASHRAFM, AKHTAR M S. Characterizations of Lie triple derivations on generalized matrix algebras[J]. Communications in Algebra, 2020, 48(9):3651-3660. [14] LIU Lei. Lie triple derivations on factor von Neumann algebras[J]. Bulletin of the Korean Mathematical Society, 2015, 52(2):581-591. [15] 白延丽,张建华. 三角代数上Lie三重导子的刻画[J]. 数学学报(中文版), 2017, 60(1):31-38. BAI Yanli, ZHANG Jianhua. Characterizations of Lie triple derivations on triangular algebras[J]. Acta Math Sinica, 2017, 60(1):31-38. [16] LIU Lei. Lie triple derivations on von Neumann algebras[J]. Chinese Annals of Mathematics(Series B), 2018, 39(5):817-828. [17] ZHAO Xingpeng. Nonlinear Lie triple derivations by local actions on triangular algebras[J]. Journal of Algebra and Its Applications, 2023, 22(3):1-15. [18] JACOBSON N. Basic algebra, II[M]. New York: W H Freeman and Company, 1989. [19] LI Yanbo, WEI Feng. Semi-centralizing maps of generalized matrix algebras[J]. Linear Algebra and Its Applications, 2012, 436(5):1122-1153. |
| [1] | 李昕洋,孙冰,周鑫. 李color代数的双导子[J]. 《山东大学学报(理学版)》, 2025, 60(11): 122-129. |
| [2] | 丁亚洲,王淑娟. W(2)到Kac模的一阶上同调[J]. 《山东大学学报(理学版)》, 2022, 57(12): 71-74. |
| [3] | 费秀海,张海芳. 广义矩阵代数上一类非全局非线性三重高阶可导映射[J]. 《山东大学学报(理学版)》, 2022, 57(10): 97-105. |
| [4] | 马帅英,张建华. 三角代数上的一类非全局高阶可导非线性映射[J]. 《山东大学学报(理学版)》, 2021, 56(2): 48-55. |
| [5] | 张芳娟. 因子von Neumann代数上ξ-斜Jordan可导映射的一个刻画[J]. 《山东大学学报(理学版)》, 2020, 55(7): 32-37. |
| [6] | 白瑞蒲,吴婴丽,侯帅. 8-维3-李代数的Manin Triple[J]. 《山东大学学报(理学版)》, 2019, 54(6): 30-33. |
| [7] | 高仕娟,张建华. 含幂等元的环上的(α,β)-导子的刻画[J]. 《山东大学学报(理学版)》, 2019, 54(4): 1-5. |
| [8] | 高瑞梅,高嘉英,初颖. 变形广义Shi构形的单根基[J]. 《山东大学学报(理学版)》, 2019, 54(2): 66-70. |
| [9] | 费秀海,张建华. 三角代数上关于内导子空间Lie不变的线性映射[J]. 《山东大学学报(理学版)》, 2019, 54(2): 79-83. |
| [10] | 费秀海,戴磊,朱国卫. 三角代数上Lie积为平方零元的非线性Jordan高阶可导映射[J]. 《山东大学学报(理学版)》, 2019, 54(12): 50-58. |
| [11] | 费秀海,戴磊. 广义矩阵代数上双可导映射的可加性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 85-90. |
| [12] | 张霞,张建华. 三角代数上互逆元处的高阶ξ-Lie可导映射[J]. 《山东大学学报(理学版)》, 2019, 54(10): 79-84. |
| [13] | 刘莉君. 布尔代数上triple-δ-导子的特征及性质[J]. 山东大学学报(理学版), 2017, 52(11): 95-99. |
| [14] | 张芳娟. 广义矩阵代数上的非线性Lie中心化子[J]. 山东大学学报(理学版), 2015, 50(12): 10-14. |
| [15] | 李俊, 张建华, 陈琳. 三角Banach代数上的对偶模Jordan导子和对偶模广义导子[J]. 山东大学学报(理学版), 2015, 50(10): 76-80. |
|
||