张露,马如云
ZHANG Lu, MA Ru-yun
摘要: 在非线性项满足渐近线性增长条件下,研究了二阶半正离散边值问题
-Δ2u(t-1)=λf(t,u(t)), t∈[1,T]Z,
αu(0)-βΔu(0)=0, γu(T)+δΔu(T)=0
正解的存在性, 其中 λ>0 为参数, f:[1,T]Z×R+→R连续, 主要结果的证明基于分歧理论及拓扑度理论。
[1] | 王娇. 一类非线性二阶常微分方程 Dirichlet问题正解的存在性[J]. 山东大学学报(理学版), 2018, 53(6): 64-69. |
[2] | 闫东亮. 带有导数项的二阶周期问题正解[J]. 山东大学学报(理学版), 2017, 52(9): 69-75. |
[3] | 李涛涛. 二阶半正椭圆微分方程径向正解的存在性[J]. 山东大学学报(理学版), 2017, 52(4): 48-55. |
[4] | 冯海星,翟成波. 高阶非线性分数阶微分方程系统的多个正解[J]. 山东大学学报(理学版), 2017, 52(12): 48-57. |
[5] | 朱雯雯. 一阶多点边值问题多个解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 42-48. |
[6] | 李晓燕,徐嫚. 二阶脉冲微分方程Dirichlet问题非平凡解的存在性及多解性[J]. 山东大学学报(理学版), 2016, 51(12): 29-35. |
[7] | 郭丽君. 非线性微分方程三阶三点边值问题正解的存在性[J]. 山东大学学报(理学版), 2016, 51(12): 47-53. |
[8] | 朱雯雯. 带参数的一阶周期边值问题正解的存在性及多解性[J]. 山东大学学报(理学版), 2016, 51(12): 36-41. |
[9] | 李海侠. 带有保护区域的加法Allee效应捕食-食饵模型的共存解[J]. 山东大学学报(理学版), 2015, 50(09): 88-94. |
[10] | 马陆一. 非线性二阶Neumann边值问题的Ambrosetti-Prodi型结果[J]. 山东大学学报(理学版), 2015, 50(03): 62-66. |
[11] | 杨文彬, 李艳玲. 一类具有非单调生长率的捕食-食饵系统的动力学[J]. 山东大学学报(理学版), 2015, 50(03): 80-87. |
[12] | 孙艳梅. 奇异分数阶微分方程边值问题正解的存在性[J]. 山东大学学报(理学版), 2014, 49(2): 71-75. |
[13] | 秦小娜,贾梅*,刘帅. 具Caputo导数分数阶微分方程边值问题正解的存在性[J]. J4, 2013, 48(10): 62-67. |
[14] | 姚庆六. 奇异非自治三阶两点边值问题的正解存在性[J]. J4, 2012, 47(6): 10-15. |
[15] | 范进军,张雪玲,刘衍胜. 时间测度上带p-Laplace算子的m点边值问题正解的存在性[J]. J4, 2012, 47(6): 16-19. |
|