JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (12): 76-80.doi: 10.6040/j.issn.1671-9352.0.2020.156

Previous Articles    

Gorenstein(m,n)-injective modules

YANG Qiang, ZHAO Ren-yu   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2020-12-01

Abstract: The notion of Gorenstein (m,n)-injective left R-modules is introduced as a generalization of (m,n)-injective left R-modules. Some properties of such modules are investigated over strongly left (m,n)-coherent rings, and some equivalent characterizations of left(m,n)-injective rings are given over strongly left (m,n)-coherent rings by using Gorenstein (m,n)-injective left R-modules.

Key words: (m,n)-presented module, (m,n)-injective module, Gorenstein (m,n)-injective module, strongly (m,n)-coherent ring

CLC Number: 

  • O153.3
[1] AUSLANDER M, BRIDGER M. Stable module theory[M]. New York: Mem Amer Math Soc, 1969, 94.
[2] ENOCH E E, JENDA O M G. Gorenstein injective and projective modules[J]. Math Z, 1995, 220:611-633.
[3] CHRISTENSEN L W. Gorenstein dimension[M] //Lecture Notes in Math. Berlin: Springer-Verlag, 2000.
[4] ENOCH E E, JENDA O M G. Relative homological algerbra[M]. Berlin: Walter de Gruyter, 2000.
[5] HOLM H. Gorenstein homological dimensions[J]. J Pure Appl Algebra, 2004, 189(1):167-193.
[6] GAO Zenghui, WANG Fanggui. Coherent rings and Gorenstein FP-injective modules[J]. Comm Algerbra, 2012, 40(5):1669-1679.
[7] CHEN Jianlong, DING Nanqing, LI Yuanlin, et al. On(m,n)-injectivity of modules[J]. Comm Algerbra, 2001, 29(12):5589-5603.
[8] ZHANG Xiaoxiang, CHEN Jianlong, ZHANG Juan. On(m,n)-injective modules and(m,n)-coherent rings[J]. Algebra Colloq, 2005, 12(1):149-160.
[9] 曾月迪. 强(m,n)-凝聚环[J]. 江南大学学报(自然科学版), 2014, 13(5):611-615. ZENG Yuedi. Strongly(m,n)-coherent rings[J]. Journal of Jiangnan University(Natural Science Edition), 2014, 13(5):611-615.
[10] MAO Lixin, DING Nanqing. On relative injective modules and relative coherent rings[J]. Comm Algerbra, 2006, 34(57):2531-2545.
[1] ZHAO Yang, ZHANG Wen-hui. Strongly Ding projective and strongly Ding injective modules over formal triangular matrix rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 37-45.
[2] GUO Hui-ying, ZHANG Cui-ping. Ext-strong Ding projective modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 31-36.
[3] ZHANG Cui-ping, LIU Ya-juan. Strongly Gorenstein C-injective module and strongly Gorenstein C-flat module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 24-30.
[4] ZHAO Tiao, ZHANG Chao. q-Cartan matrices of self-injective Nakayama algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 46-51.
[5] WANG Zhan-ping, YUAN Kai-ying. Strongly Gorenstein injective modules with respect to a cotorsion pair [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 102-107.
[6] WU Xiao-ying, WANG Fang-gui. Graded version of Enochs theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 22-26.
[7] CHENG Cheng, ZOU Shi-jia. Irreducible splitting trace module of a class of Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 11-15.
[8] ZHU Lin. Separated monic representations of quivers of type A4and RSS equivalences [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 1-8.
[9] LI Jin-lan, LIANG Chun-li. Strongly Gorenstein C-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 25-31.
[10] LU Dao-wei, WANG Zhen. L-R smash product for bialgebroids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 32-35.
[11] GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15.
[12] WANG Hui-xing, CUI Jian, CHEN Yi-ning. Nil *-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 16-24.
[13] MA Xin, ZHAO You-yi, NIU Xue-na. Homology resolutions and homological dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 18-23.
[14] . Gelfand-Krillov dimension of quantized enveloping algebra Uq(An) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 12-17.
[15] SUN Yan-zhong, YANG Xiao-yan. Gorenstein AC-projective modules with respect to a semidualizing module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 31-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!