JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (2): 28-33.doi: 10.6040/j.issn.1671-9352.0.2020.423

Previous Articles    

Some characterizations of Markov quantum states

LYU Xiao-le, CHEN Zheng-li*, NIU Meng-fei   

  1. School of Mathematics and Information Science, Shaanxi Normal University, Xian 710062, Shaanxi, China
  • Published:2021-01-21

Abstract: By using operator theory and matrix theory, the significance of studying Markov quantum states is given. According to the definition of Markov quantum states and the related properties of von Neumann entropy, two necessary and sufficient conditions for a pure state to be a Markov quantum state and two sufficient conditions for a mixed state to be a Markov quantum state are proved.

Key words: Markov state, density matrix, von Neumann entropy

CLC Number: 

  • O177.1
[1] HAYDEN P, JOZSA R, PETZ D, et al. Structure of states which satisfy strong subadditivity of quantum entropy with equality[J]. Communications in Mathematical Physics, 2004, 246(2):359-374.
[2] SARGOLZAHI I. Reference state for arbitrary U-consistent subspace[J]. Journal of Physics A: Mathematical and Theoretical, 2018, 51(31):315301.
[3] BUSCEMI F. Complete positivity, Markovianity, and the quantum data-processing inequality, in the presence of initial system-environment correlations[J]. Physical Review Letters, 2014, 113(14):140502.
[4] LU X M. Structure of correlated initial states that guarantee completely positive reduced dynamics[J]. Physical Review A, 2016, 93(4):042332.
[5] JOSEPH L, SHAJI A. Reference system and not completely positive open quantum dynamics[J]. Physical Review A, 2018, 97(3):032127.
[6] BRODUTCH A, DATTA A, MODI K, et al. Vanishing quantum discord is not necessary for completely positive maps[J]. Physical Review A, 2013, 87(4):252-259.
[7] RODRÍGUEZ-ROSARIO C A, MODI K, KUAH A, et al. Completely positive maps and classical correlations[J]. Journal of Physics A: Mathematical and Theoretical, 2008, 41(20):205301.
[8] NIELSEN M A,CHUANG I L. Quantum computation and quantum information[M]. Cambridge: Cambridge University Press, 2000.
[9] LIEB E H, RUSKAI M B. Proof of the strong subadditivity of quantum-mechanical entropy[J]. Journal of Mathematical Physics, 1973, 14(12):1938-1941.
[10] GUO Zhihua, CAO Huaixin. Local quantum channels preserving quantum correlation[J]. Journal of Physics A: Mathematical and Theoretical, 2013, 46(6):065303.
[1] FENG-GAO Hui-zi, CAO Xiao-hong. Judgement of a-Weyls theorem for bounded linear operators [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 88-94.
[2] LI Chun-fang, MENG Bin. Some properties of measure frames [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 99-104.
[3] WU Li, ZHANG Jian-hua. Nonlinear Jordan derivable maps on triangular algebras by Lie product square zero elements [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 42-47.
[4] ZHANG Qiao-wei, GUO Zhi-hua, CAO Huai-xin. Topological effect algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 97-103.
[5] WANG Li-li, CHEN Zheng-li. Some research about Wigner-Yanase-Dyson skew information [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 43-47.
[6] WANG Xiao-xia, CAO Huai-xin, ZHA Liao. The influences of quantum channels on the generalized robustness of entanglement [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 127-134.
[7] FU Li-na, ZHANG Jian-hua. Characterization of Lie centralizers on B(X) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 10-14.
[8] LIANG Wen-ting, CHEN Zheng-li. Strongly and weakly separable operators on tensor product spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 19-24.
[9] ZHANG Fang-juan. Nonlinear Lie centralizers of generalized matrix algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 10-14.
[10] YANG Yuan, ZHANG Jian-hua. A local characterization of centralizers on B(H) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 1-4.
[11] LI Jun, ZHANG Jian-hua, CHEN Lin. Dual module Jordan derivations and dual module generalized derivations of triangular Banach algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(10): 76-80.
[12] MENG Jiao, JI Guo-xing. Additive maps on standard operator algebras preserving divisors [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(08): 20-23.
[13] KONG Liang, CAO Huai-xin. Characterization and perturbations of ε-approximate square isosceles-orthogonality preserving mappings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(06): 75-82.
[14] QI Wei-qing, JI Pei-sheng, LU Hai-ning. General solution and stability of bi-cubic functional equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(02): 60-66.
[15] YANG Gong-lin, JI Pei-sheng. Some properties of primitive ideal submodules in Hilbert C*-modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 50-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!