JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2022, Vol. 57 ›› Issue (6): 8-14.doi: 10.6040/j.issn.1671-9352.0.2021.413

Previous Articles    

The (m,n)-cotorsion dimensions of modules and rings

WANG Ya-li, ZHAO Ren-yu*   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2022-06-10

Abstract: Let m, n be two given positive integers. It is shown that over slightly(m,n)-coherent rings, the(m,n)-cotorsion dimensions of modules and rings share many nice properties as the classical homological dimensions. Some equivalent characterizations that slightly(m,n)-coherent rings are von-Neumann regular rings are given.

Key words: (m,n)-cotorsion dimension, (m,n)-cotorsion envelope, (m,n)-flat cover, slightly(m,n)-coherent ring

CLC Number: 

  • O153.3
[1] ENOCH E E, JENDA O M G. Relative homological algebra[M]. Berlin-New York: Walter de Gruyter, 2000.
[2] DING Nanqing. On envelopes with the unique mapping property[J]. Communications Algebra, 1996, 24(4):1459-1470.
[3] GÖBEL R, TRLIFAJ J. Approximations and endomorphism algebras of modules[M]. New York: Walter de Gruyter, 2006.
[4] MAO Lixin, DING Nanqing. The cotorsion dimension of modules and rings[J]. Lecture Notes in Pure and Applied Mathematics, 2006, 249:217-233.
[5] GENG Yuxian. The P-cotorsion dimensions of modules and rings[J]. Acta Mathematica Scientia, 2010, 30(4):1029-1043.
[6] ZHU Haiyan, DING Nanqing. Generalized morphic rings and their applications[J]. Communications Algebra, 2007, 35(9):2820-2837.
[7] ZHANG Xiaoxiang, CHEN Jianlong, ZHANG Juan. On(m,n)-injective modules and(m,n)-coherent rings[J]. Algebra Colloquium, 2005, 12(1):149-160.
[8] CHEN Jianlong, DING Nanqing, LI Yuanlin, et al. On (m,n)-injective modules[J]. Communications Algebra, 2001, 29(12):5589-5603.
[9] MAO Lixin, DING Nanqing. On relative injective modules and relative coherent rings[J]. Communications Algebra, 2006, 34(7):2531-2545.
[10] ZHAO Renyu, LI Ruilin. Slightly(m,n)-coherent rings and(m,n)-homological dimensions[J]. Communications Algebra, 2020, 48(11):4809-4823.
[11] ZENG Yuedi. On slightly P-coherent rings[J]. Communications Algebra, 2018, 46(11):4941-4953.
[12] ZHU Zhanmin, CHEN Jianlong, ZHANG Xiaoxiang. On(m,n)-purity of modules[J]. East-West Journal of Mathematics, 2003, 5(1): 35-44.
[13] XU Jinzhong. Flat covers of modules[M] //Lecture Notes in Mathematics, 1634. New York: Springer-Verlag, 1998.
[1] ZHAO Yang, ZHANG Wen-hui. Strongly Ding projective and strongly Ding injective modules over formal triangular matrix rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 37-45.
[2] GUO Hui-ying, ZHANG Cui-ping. Ext-strong Ding projective modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 31-36.
[3] ZHANG Cui-ping, LIU Ya-juan. Strongly Gorenstein C-injective module and strongly Gorenstein C-flat module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 24-30.
[4] ZHAO Tiao, ZHANG Chao. q-Cartan matrices of self-injective Nakayama algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 46-51.
[5] WANG Zhan-ping, YUAN Kai-ying. Strongly Gorenstein injective modules with respect to a cotorsion pair [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 102-107.
[6] WU Xiao-ying, WANG Fang-gui. Graded version of Enochs theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 22-26.
[7] CHENG Cheng, ZOU Shi-jia. Irreducible splitting trace module of a class of Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 11-15.
[8] ZHU Lin. Separated monic representations of quivers of type A4and RSS equivalences [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 1-8.
[9] LI Jin-lan, LIANG Chun-li. Strongly Gorenstein C-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 25-31.
[10] LU Dao-wei, WANG Zhen. L-R smash product for bialgebroids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 32-35.
[11] GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15.
[12] WANG Hui-xing, CUI Jian, CHEN Yi-ning. Nil *-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 16-24.
[13] MA Xin, ZHAO You-yi, NIU Xue-na. Homology resolutions and homological dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 18-23.
[14] . Gelfand-Krillov dimension of quantized enveloping algebra Uq(An) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 12-17.
[15] SUN Yan-zhong, YANG Xiao-yan. Gorenstein AC-projective modules with respect to a semidualizing module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 31-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!