JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2018, Vol. 53 ›› Issue (11): 85-94.doi: 10.6040/j.issn.1671-9352.3.2018.001

Previous Articles    

Grid community case classification and distribution model based on Bayesian decision

WANG He-qin1, WANG Yang2   

  1. 1. Department of Information Management, Anhui Vocational College of Police Officers, Hefei 230031, Anhui, China;
    2.School of Computer and Information Technology, Anhui Normal University, Wuhu 241000, Anhui, China
  • Published:2018-11-14
  • About author:国家自然科学基金资助项目(61572036);安徽省重大人文社科基金资助项目(SK2014ZD033);安徽省高校自然科学研究重点项目(KJ2016A167);安徽省高等学校自然科学研究重点项目(KJ2017A639)
  • Supported by:

Abstract: Along with the intensification of urbanization in China, smart city and collaborative governance are becoming the novel paradigm of development. In the meantime, popularization of information technology and smart end devices makes it possible for civilians to widely participate in social public management. However, traditional channels of communication between people and government and the community management platform architecture have failed to meet the increasingly growing scale of data and the social reality that civilians are broadly engaging in urban governance. Hence, the grid community case classification and distribution model based on the Bayesian decision is proposed in this study. Firstly, the model adopted uses the theory of Bayesian decision to analyze and classify the social management case information that civilians have handed in. Then, involving the location information as the cases report, it ensures the certain social grid where exactly it is. Consequently, cases are to be delivered to the relevant departments of the social grid to which it belongs in terms of the classification results. K-fold cross-validation results show that the case distribution model proposed in the study has high availability and accuracy.

Key words: grid community, Bayesian decision, big data, case distribution

CLC Number: 

  • TP393
[1] MEIJER A,BOLÍVAR M P R. Governing the smart city: a review of the literature on smart urban governance[J]. International Review of Administrative Sciences, 2015, 82(2):392-408.
[2] 徐漪,沈建峰.大数据时代社会治理的变革:模式与策略[J].产业与科技论坛,2017,16(24):9-11. XU Yi, SHEN Jianfeng. The transformation of social governance in the age of big data: patterns and strategies[J]. Industrial & Science Tribune, 2017, 16(24):9-11.
[3] 黄亚坤,王杨,王明星. 综合社区与关联序列挖掘的电子政务推荐算法[J]. 计算机应用, 2017, 37(9): 2671-2677. HUANG Yakun, WANG Yang, WANG Mingxing. E-government recommendation algorithm combining community and association sequence mining[J]. Journal of Computer Applications, 2017, 37(9):2671-2677.
[4] 王保森. 网格化管理: 城市社区管理模式的创新[J]. 规划师, 2007, 23(5):46-49. WANG Baosen. Grid management: innovation of urban community management model[J]. Planners, 2007, 23(5):46-49.
[5] SAHAMI M, HEILMAN T D. A web-based kernel function for measuring the similarity of short text snippets[C] // International Conference on World Wide Web, WWW 2006. Edinburgh: ACM, 2006: 377-386.
[6] IRANI D, WEBB S, PU C, et al. Study of trend-stuffing on twitter through text classification[C] // CEAS. Washington: ACM, 2010: 46-54.
[7] SRIRAM B, FUHRY D, DEMIR E, et al. Short text classification in twitter to improve information filtering[C] // International ACM SIGIR Conference on Research and Development in Information Retrieval. Geneva: ACM, 2010: 841-842.
[8] KUMBHAR P, MALI M, ATIQUE M. A genetic-fuzzy approach for automatic text categorization[C] // Advance Computing Conference(IACC), 2017 IEEE 7th International. Hyderabad: IEEE, 2017: 572-578.
[9] LI Yuefeng, ZHANG Libiao, XU Yue, et al. Enhancing binary classification by modeling uncertain boundary in three-way decisions[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(7):1438-1451.
[10] LIU H, LI X, ZHANG S. Learning instance correlation functions for multilabel classification[J]. IEEE Transactions on Cybernetics, 2017, 47(2):499-510.
[11] 周志华.机器学习[M]. 北京: 清华大学出版社, 2016: 147-149. ZHOU Zhihua. Machine learning[M]. Beijing: Tsinghua University Press, 2016: 147-149.
[12] 王青松,魏如玉.基于短语的贝叶斯中文垃圾邮件过滤方法[J]. 计算机科学, 2016, 43(4):256-259. WANG Qingsong, WEI Ruyu. Bayesian Chinese spam filtering method based on phrases[J]. Computer Science, 2016, 43(4):256-259.
[13] 承孝敏. 大数据应用于社会治理的芜湖实践[J]. 社会治理, 2016(4):114-116. CHENG Xiaomin. The application of big data in the practice of social governance in Wuhu[J]. Social Governance Review, 2016(4):114-116.
[14] 周庆平,谭长庚,王宏君,等. 基于聚类改进的KNN文本分类算法[J]. 计算机应用研究, 2016, 33(11):3374-3377. ZHOU Qingping, TAN Changgeng, WANG Hongjun, et al. Improved KNN text classification algorithm based on clustering[J]. Application Research of Computers, 2016, 33(11):3374-3377.
[15] 周俊,郑中华,张炜. 基于改进最大匹配算法的中文分词粗分方法[J]. 计算机工程与应用, 2014, 50(2):124-128. ZHOU Jun, ZHENG Zhonghua, ZHANG Wei. Chinese word segmentation based on improving maximum matching algorithm[J]. Computer Engineering and Applications, 2014, 50(2):124-128.
[16] 黄昌宁,赵海. 中文分词十年回顾[J]. 中文信息学报, 2007, 21(3):8-19. HUANG Changning, ZHAO Hai. Chinese word segmentation: a decade review[J]. Journal of Chinese Information Processing, 2007, 21(3):8-19.
[17] VEHTARI A, GELMAN A, GABRY J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC[J]. Statistics and Computing, 2017, 27(5):1413-1432.
[1] YAN Yan, HAO Xiao-hong. Differential privacy partitioning algorithm based on adaptive density grids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(9): 12-22.
[2] LI Jin-hai, WU Wei-zhi. Granular computing approach for formal concept analysis and its research outlooks [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(7): 1-12.
[3] CHEN Qiang, DU Pan, CHEN Hai-qiang, BAO Xiu-guo, LIU Yue, CHENG Xue-qi. K-Canopy:a fast data segmentation algorithm for the topic detection [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(9): 106-112.
Full text



[1] SHAO Yong. Semilattice-ordered completely regular periodic semigroups[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 1 -5 .
[2] GONG Zeng-tai, GAO Han. Preinvexity of n-dimensional fuzzy number-valued functions[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 72 -81 .
[3] CHEN Wen-qian, ZHANG Xiao-jin, ZAN Li-bo. The number of tilting modules over Gorenstein algebras[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 14 -16 .
[4] GUO Shou-tao, WANG Zhan-ping. Gorenstein homological dimensions of modules under exact zero-divisors[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 17 -21 .
[5] WU Xiao-ying, WANG Fang-gui. Graded version of Enochs theorem[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 22 -26 .
[6] LI Mei-lian, DENG Qing-ying. Maple calculation of the transition polynomial of plane graph[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 27 -34 .
[7] WANG Dan, WANG Zheng-pan. Characterizing a band variety in terms of forbidden subsemigroups[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 6 -8 .
[8] LIANG Xing-liang, WU Su-peng, REN Jun. Characterization of monoids by C(P')acts[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 9 -13 .
[9] FANG Qi-ming, ZHANG Li. k-frugal list coloring of planar graphs without 4 and 5-cycles[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 35 -41 .
[10] ZHEN Wei-wei, ZENG Jian, REN Jian-long. Time dependent parabolic inverse source problem based on variational theory[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 61 -71 .