J4

• Articles • Previous Articles     Next Articles

Weyl's theorem for 2×2 upper triangular operator matrices

LI Yuan   

  1. College of Mathematics and Information Science, Shaanxi Normal Univ., Xi'an 710062, Shaanxi, China
  • Received:2006-04-19 Revised:1900-01-01 Online:2006-10-24 Published:2006-10-24
  • Contact: LI Yuan

Abstract: The conditions under which Weyl's theorem and Browder's theorem survive for 2×2 upper triangular operator matrices in Hilbert space are considered and explored.

Key words: 2×2 upper triangular operator matrixes , Browder's theorem, Weyl's theorem

CLC Number: 

  • O177.1
[1] WU Li, ZHANG Jian-hua. Nonlinear Jordan derivable maps on triangular algebras by Lie product square zero elements [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 42-47.
[2] ZHANG Qiao-wei, GUO Zhi-hua, CAO Huai-xin. Topological effect algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 97-103.
[3] WANG Li-li, CHEN Zheng-li. Some research about Wigner-Yanase-Dyson skew information [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 43-47.
[4] WANG Xiao-xia, CAO Huai-xin, ZHA Liao. The influences of quantum channels on the generalized robustness of entanglement [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 127-134.
[5] FU Li-na, ZHANG Jian-hua. Characterization of Lie centralizers on B(X) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 10-14.
[6] LIANG Wen-ting, CHEN Zheng-li. Strongly and weakly separable operators on tensor product spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 19-24.
[7] YANG Yuan, ZHANG Jian-hua. A local characterization of centralizers on B(H) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 1-4.
[8] ZHANG Fang-juan. Nonlinear Lie centralizers of generalized matrix algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 10-14.
[9] LI Jun, ZHANG Jian-hua, CHEN Lin. Dual module Jordan derivations and dual module generalized derivations of triangular Banach algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(10): 76-80.
[10] MENG Jiao, JI Guo-xing. Additive maps on standard operator algebras preserving divisors [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(08): 20-23.
[11] KONG Liang, CAO Huai-xin. Characterization and perturbations of ε-approximate square isosceles-orthogonality preserving mappings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(06): 75-82.
[12] QI Wei-qing, JI Pei-sheng, LU Hai-ning. General solution and stability of bi-cubic functional equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(02): 60-66.
[13] YANG Gong-lin, JI Pei-sheng. Some properties of primitive ideal submodules in Hilbert C*-modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 50-55.
[14] LI Rong, JI Guo-xing*. Additive maps preserving operator range or kernel inclusion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(2): 42-45.
[15] BU Mei-hua,JI Pei-sheng,QI Wei-qing . Lie ideas of the nest subalgebras in hyperfinite factors [J]. J4, 2007, 42(10): 69-75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!