JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (03): 80-87.doi: 10.6040/j.issn.1671-9352.0.2014.339

Previous Articles     Next Articles

Dynamics research in a predator-prey system with a nonlinear growth rate

YANG Wen-bin, LI Yan-ling   

  1. College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
  • Received:2014-07-21 Revised:2014-11-10 Online:2015-03-20 Published:2015-03-13

Abstract: The paper is concerned with a predator-prey diffusive dynamics subject to homogeneous Dirichlet boundary conditions, where the predator population reproduces by the nonlinear function 1/(1+ev). Existence and uniqueness of coexistence states for the predator-prey system are investigated. Moreover, some asymptotic behaviors of time-dependent solutions are shown and some numerical simulations are done to complement the analytical results. The main tools used here include the implicit function theorem, the bifurcation theory and the perturbation technique.

Key words: reaction-diffusion equations, uniqueness, numerical simulation, stability, positive solution

CLC Number: 

  • O175.26
[1] BLAT J, BROWN K J. Global bifurcation of positive solutions in some systems of elliptic equations[J]. SIAM J Math Anal, 1986, 17(6):1339-1353.
[2] DE lA SEN M. The generalized Beverton-Holt equation and the control of populations[J]. Appl Math Model, 2008, 32(11):2312-2328.
[3] DE lA SEN M, ALONSO-QUESADA S. Control issues for the Beverton-Holt equation in ecology by locally monitoring the environment carrying capacity: Non-adaptive and adaptive cases[J]. Appl Math Comput, 2009, 215(7): 2616-2633.
[4] ERBACH A, LUTSCHER F, SEO G. Bistability and limit cycles in generalist predator-prey dynamics[J]. Ecol Comple, 2013, 14:48-55.
[5] HSU S B, HWANG T W, KUANG Y. Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system [J]. J Math Biol, 2001, 42(6):489-506.
[6] KUANG Y, BERETTA E. Global qualitative analysis of a ratio-dependent predator-prey system[J]. J Math Biol, 1998, 36(4):389-406.
[7] PAO C V. Nonlinear parabolic and elliptic equations[M]. New York: Plenum Press, 1992.
[8] PROTTER M H, WEINBERGER H F. Maximum principles in differential equations[M]. New York: Springer-Verlag, 1984.
[9] SCHAEFER H H. Topological vector spaces[M]. New York: Springer, 1971.
[10] SMOLLER J. Shock waves and reaction-diffusion equations[M]. New York: Springer-Verlag, 1994.
[11] TANG Sanyi, CHEKE R A, XIAO Yanni. Optimal implusive harvesting on non-autonomous Beverton-Holt difference equations[J]. Nonlinear Anal, 2006, 65(12): 2311-2341.
[12] YAMADA Y. Positive solutions for Lotka-Volterra systems with cross-diffusion [M]//Battelli F, Fecˇkan M. Handbook of differential equations: stationary partial differential equations: Vol VI. Amsterdam: Elsevier, 2008:411-501.
[13] YI Fengqi, WEI Junjie, SHI Junping. Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system [J]. J Differential Equations, 2009, 246(5):1944-1977.
[14] YOSHIDA T, JONES L E, ELLNER S P, et al. Rapid evolution drives ecological dynamics in a predator-prey system [J]. Nature, 2003, 424(17): 303-306.
[15] ZHANG Guohong, WANG Wendi, WANG Xiaoli. Coexistence states for a diffusive one-prey and two-predators model with B-D functional response [J]. J Math Anal Appl, 2012, 387(2): 931-948.
[1] LIU Hua, YE Yong, WEI Yu-mei, YANG Peng, MA Ming, YE Jian-hua, MA Ya-lei. Study of dynamic of a discrete host-parasitoid model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(7): 30-38.
[2] WANG Su-yun, LI Yong-jun. Solvability of nonlinear second-order boundary value problems with nonlinearities which cross the resonance points [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 53-56.
[3] . Existence of positive solutions for a class of nonlinear second-order Dirichlet problem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 64-69.
[4] XIAO Xin-ling. Forward-backward stochastic differential equations on Markov chains [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 46-54.
[5] ZHEN Wei-wei, ZENG Jian, REN Jian-long. Time dependent parabolic inverse source problem based on variational theory [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 61-71.
[6] CAO Wei-dong, DAI Tao, YU Jin-biao, WANG Xiao-hong, SHI An-feng. Improvement on the solution of pressure equation based on alternating direction in chemical flooding model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 88-94.
[7] YAN Dong-liang. Positive solutions of a second order periodic problems with derivative terms [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(9): 69-75.
[8] SONG Liang, FENG Jin-shun, CHENG Zheng-xing. Existence and stability for multiple gabor frames [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 17-24.
[9] LI Tao-tao. Existence of radial positive solutions of second-order semi-positone elliptic differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 48-55.
[10] BAI Bao-li, ZHANG Jian-gang, DU Wen-ju, YAN Hong-ming. Dynamic behavior analysis of a stochastic SIR epidemic model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 72-82.
[11] ZHANG Sha, JIA Mei, LI Yan, LI Xiao-chen. Existence and uniqueness of solutions for three point boundary value problems of impulsive fractional differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 66-72.
[12] . Uniqueness of solution for singular boundary value problems of fourth-order differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 73-76.
[13] LI Jin-lan, LIANG Chun-li. Strongly Gorenstein C-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 25-31.
[14] FENG Hai-xing, ZHAI Cheng-bo. Multiple positive solutions of a system of high order nonlinear fractional differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 48-57.
[15] HUANG Lei-lei, SONG Xiao-qiu, LU Wei. On polynomial stability of linear discrete-time systems in Banach spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 36-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!