JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (03): 80-87.doi: 10.6040/j.issn.1671-9352.0.2014.339
Previous Articles Next Articles
YANG Wen-bin, LI Yan-ling
CLC Number:
[1] BLAT J, BROWN K J. Global bifurcation of positive solutions in some systems of elliptic equations[J]. SIAM J Math Anal, 1986, 17(6):1339-1353. [2] DE lA SEN M. The generalized Beverton-Holt equation and the control of populations[J]. Appl Math Model, 2008, 32(11):2312-2328. [3] DE lA SEN M, ALONSO-QUESADA S. Control issues for the Beverton-Holt equation in ecology by locally monitoring the environment carrying capacity: Non-adaptive and adaptive cases[J]. Appl Math Comput, 2009, 215(7): 2616-2633. [4] ERBACH A, LUTSCHER F, SEO G. Bistability and limit cycles in generalist predator-prey dynamics[J]. Ecol Comple, 2013, 14:48-55. [5] HSU S B, HWANG T W, KUANG Y. Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system [J]. J Math Biol, 2001, 42(6):489-506. [6] KUANG Y, BERETTA E. Global qualitative analysis of a ratio-dependent predator-prey system[J]. J Math Biol, 1998, 36(4):389-406. [7] PAO C V. Nonlinear parabolic and elliptic equations[M]. New York: Plenum Press, 1992. [8] PROTTER M H, WEINBERGER H F. Maximum principles in differential equations[M]. New York: Springer-Verlag, 1984. [9] SCHAEFER H H. Topological vector spaces[M]. New York: Springer, 1971. [10] SMOLLER J. Shock waves and reaction-diffusion equations[M]. New York: Springer-Verlag, 1994. [11] TANG Sanyi, CHEKE R A, XIAO Yanni. Optimal implusive harvesting on non-autonomous Beverton-Holt difference equations[J]. Nonlinear Anal, 2006, 65(12): 2311-2341. [12] YAMADA Y. Positive solutions for Lotka-Volterra systems with cross-diffusion [M]//Battelli F, Fecˇkan M. Handbook of differential equations: stationary partial differential equations: Vol VI. Amsterdam: Elsevier, 2008:411-501. [13] YI Fengqi, WEI Junjie, SHI Junping. Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system [J]. J Differential Equations, 2009, 246(5):1944-1977. [14] YOSHIDA T, JONES L E, ELLNER S P, et al. Rapid evolution drives ecological dynamics in a predator-prey system [J]. Nature, 2003, 424(17): 303-306. [15] ZHANG Guohong, WANG Wendi, WANG Xiaoli. Coexistence states for a diffusive one-prey and two-predators model with B-D functional response [J]. J Math Anal Appl, 2012, 387(2): 931-948. |
[1] | LIU Hua, YE Yong, WEI Yu-mei, YANG Peng, MA Ming, YE Jian-hua, MA Ya-lei. Study of dynamic of a discrete host-parasitoid model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(7): 30-38. |
[2] | WANG Su-yun, LI Yong-jun. Solvability of nonlinear second-order boundary value problems with nonlinearities which cross the resonance points [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 53-56. |
[3] | . Existence of positive solutions for a class of nonlinear second-order Dirichlet problem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 64-69. |
[4] | XIAO Xin-ling. Forward-backward stochastic differential equations on Markov chains [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 46-54. |
[5] | ZHEN Wei-wei, ZENG Jian, REN Jian-long. Time dependent parabolic inverse source problem based on variational theory [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 61-71. |
[6] | CAO Wei-dong, DAI Tao, YU Jin-biao, WANG Xiao-hong, SHI An-feng. Improvement on the solution of pressure equation based on alternating direction in chemical flooding model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 88-94. |
[7] | YAN Dong-liang. Positive solutions of a second order periodic problems with derivative terms [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(9): 69-75. |
[8] | SONG Liang, FENG Jin-shun, CHENG Zheng-xing. Existence and stability for multiple gabor frames [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 17-24. |
[9] | LI Tao-tao. Existence of radial positive solutions of second-order semi-positone elliptic differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 48-55. |
[10] | BAI Bao-li, ZHANG Jian-gang, DU Wen-ju, YAN Hong-ming. Dynamic behavior analysis of a stochastic SIR epidemic model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 72-82. |
[11] | ZHANG Sha, JIA Mei, LI Yan, LI Xiao-chen. Existence and uniqueness of solutions for three point boundary value problems of impulsive fractional differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 66-72. |
[12] | . Uniqueness of solution for singular boundary value problems of fourth-order differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 73-76. |
[13] | LI Jin-lan, LIANG Chun-li. Strongly Gorenstein C-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 25-31. |
[14] | FENG Hai-xing, ZHAI Cheng-bo. Multiple positive solutions of a system of high order nonlinear fractional differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 48-57. |
[15] | HUANG Lei-lei, SONG Xiao-qiu, LU Wei. On polynomial stability of linear discrete-time systems in Banach spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 36-41. |
|