JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (10): 76-80.doi: 10.6040/j.issn.1671-9352.0.2015.148

Previous Articles     Next Articles

Dual module Jordan derivations and dual module generalized derivations of triangular Banach algebra

LI Jun1, ZHANG Jian-hua2, CHEN Lin1   

  1. 1. Department of Mathematics and Physics, Anshun University, Anshun 561000, Guizhou, China;
    2. School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
  • Received:2015-04-07 Revised:2015-06-19 Online:2015-10-20 Published:2015-10-21

Abstract: Let A and B be unital Banach algebras, and let M be a Banach A, B-bimodule. Then T=(A MB) becomes a triangular Banach algebra when equipped with the usual matrix operation and a Banach space norm ‖(a mb)‖=‖a‖A+‖m‖M+‖b‖B. T*=(A* M*B*) is the dual space of T by the action (f hg)(a mb)=f(a)+h(m)+g(b). T* becomes a dual Banach T- bimodule with the module action defined by am (a mb)·(f hg)=(a·f+m·h b·hb·g), (f hg)·(a mb)=(f·a h·ah·m+g·b). The map from T into T* is called dual module map. We investigate the dual module Jordan derivations and dual module generalized derivations on T, giving a condition under which a dual module Jordan derivation is a dual module derivation and a characterization of dual module generalized derivation.

Key words: triangular Banach algebra, dual Banach bimodule, dual module generalized derivation, dual module Jordan derivation

CLC Number: 

  • O177.1
[1] HERSTEIN I N. Jordan derivation on prime rings[J]. Pro Amer Math Soc, 1957, 8(6):1104-1110.
[2] BRESŠAR M. Jordan derivations on semiprime rings[J]. Pro Amer Math Soc, 1988, 104(4):1003-1006.
[3] 张建华. 套代数上的Jordan导子[J]. 数学学报, 1998, 41(1):205-212. ZHANG Jianhua. Jordan derivations of nest algebra[J]. Acta Math Sinica, 1998, 41(1):205-212.
[4] LI Juan, LU Fangyan. Additive Jordan derivation of reflexive algebras[J]. Math Anal Appl, 2007, 329(1):102-111.
[5] ZHANG Jianhua, YU Weiyan. Jordan derivations of triangular algebra[J]. Linear Algebra Appl, 2006, 419(1):251-255.
[6] HOU Jinchuan, QI Xiaofei. Generalized Jordan derivation on nest algebra [J]. Linear Algebra Appl, 2009, 430 (5-6): 1479-1485.
[7] BENKOVI? D. Jordan derivations and antiderivations on triangular matrices[J]. Linear Algebra Appl, 2005, 397(3):234-244.
[8] FORREST B E, MARCOUX L W. Derivation of triangular Banach algebra[J]. Indiana Univ Math J, 1996, 45(2):441-462.
[9] FORREST B E, MARCOUX L W. Weak amenability of triangular Banach algebras[J]. Trans Amer Math Soc, 2002, 354(4):1435-1452.
[1] WU Li, ZHANG Jian-hua. Nonlinear Jordan derivable maps on triangular algebras by Lie product square zero elements [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 42-47.
[2] ZHANG Qiao-wei, GUO Zhi-hua, CAO Huai-xin. Topological effect algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 97-103.
[3] WANG Li-li, CHEN Zheng-li. Some research about Wigner-Yanase-Dyson skew information [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 43-47.
[4] WANG Xiao-xia, CAO Huai-xin, ZHA Liao. The influences of quantum channels on the generalized robustness of entanglement [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 127-134.
[5] FU Li-na, ZHANG Jian-hua. Characterization of Lie centralizers on B(X) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 10-14.
[6] LIANG Wen-ting, CHEN Zheng-li. Strongly and weakly separable operators on tensor product spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 19-24.
[7] YANG Yuan, ZHANG Jian-hua. A local characterization of centralizers on B(H) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 1-4.
[8] ZHANG Fang-juan. Nonlinear Lie centralizers of generalized matrix algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 10-14.
[9] MENG Jiao, JI Guo-xing. Additive maps on standard operator algebras preserving divisors [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(08): 20-23.
[10] KONG Liang, CAO Huai-xin. Characterization and perturbations of ε-approximate square isosceles-orthogonality preserving mappings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(06): 75-82.
[11] QI Wei-qing, JI Pei-sheng, LU Hai-ning. General solution and stability of bi-cubic functional equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(02): 60-66.
[12] YANG Gong-lin, JI Pei-sheng. Some properties of primitive ideal submodules in Hilbert C*-modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 50-55.
[13] LI Rong, JI Guo-xing*. Additive maps preserving operator range or kernel inclusion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(2): 42-45.
[14] BU Mei-hua,JI Pei-sheng,QI Wei-qing . Lie ideas of the nest subalgebras in hyperfinite factors [J]. J4, 2007, 42(10): 69-75 .
[15] WANG Qiao,LIU Xiao-ji* . Characterization and perturbation of the generalized Drazin inverse for Banach space operators [J]. J4, 2008, 43(8): 42-45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!