JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (10): 89-94.doi: 10.6040/j.issn.1671-9352.0.2014.371

Previous Articles    

Analytical solutions for the multi-term time-space Caputo-Riesz fractional diffusion equations in 2-D and 3-D

WANG Xue-bin   

  1. Department of Mathematics and Computer, Wuyi University, Wuyishan 354300, Fujian, China
  • Received:2014-08-13 Revised:2015-03-06 Online:2015-10-20 Published:2015-10-21

Abstract: In this paper, the multi-term time-space Caputo-Riesz fractional Diffusion equations (MT-TSCR-FDE) in 2-D and 3-D with Dirichlet nonhomogeneous boundary conditions are considered. By using a spectral representation we propose some new technique that enable the derivation of the analytical solutions for the MT-TSCR-FDE.

Key words: multivariate Mittag-Leffler function, Fractional Laplacian operator, Caputo-Riesz fractional diffusion equations

CLC Number: 

  • O175.2
[1] DATSKO B Y, GAFIYCHUK V V. Mathematical modeling of fractional reaction-diffusion systems with different order time derivatives[J]. Journal of Mathematical Sciences, 2010, 165(3):392-402.
[2] HILFER R. Applications of fractional calculus in physics[M]. Singapore: World Scientific, 2000.
[3] CARPINTERI A, MAINARDI F. Fractals and fractional calculus in continuum mechanics[M]. New York: Springer, 1997: 291-348.
[4] METZLER R. Non-homogeneous random walks, generalised master equations, fractional Fokker-Planck equations, and the generalised Kramers-Moyal expansion[J]. The European Physical Journal B: Condensed Matter and Complex Systems, 2001, 19(2):249-258.
[5] KEMPPAINEN J. Existence and uniqueness of the solution for a time-fractional diffusion equation[J]. Fractional Calculus and Applied Analysis, 2011, 14(3):411-417.
[6] 王学彬.二维、三维空间Riesz分数阶扩散方程的基本解[J].山东大学学报:理学版,2011,46(8):23-30. WANG Xuebin.Fundamental solutions of fractional-in-space diffusion equation with Riesz fractional derivative in two and three dimensions[J]. Journal of Shandong University: Natural Science, 2011, 46(8):23-30.
[7] 王学彬,刘发旺.二维和三维的时间分数阶电报方程的解析解[J].山东大学学报:理学版,2012,47(8):114-121. WANG Xuebin, LIU Fawang. Analytical solutions of the time-fractional telegraph equation in two and three dimensions[J]. Journal of Shandong University: Natural Science, 2012, 47(8):114-121.
[8] JIANG Hui, LIU Fawang, TURNER I, et al. Analytical solutions for the multi-term time—space Caputo—Riesz fractional advection—diffusion equations on a finite domain[J]. J Math Anal Appl, 2012, 389:1117-1127.
[9] PODLUBNY I. Fractional differential equations[M]. New York: Academic Press, 1999.
[10] GORENFLO R, MAINARDI F. Random walk models for space-fractional diffusion processes[J]. Fract Calc Appl Anal, 1998, (1):167-191.
[11] DIMOVSKI I H. Convolution calculus[M]. Sofia: Bulgarian Academy of Science, 1982.
[12] LUCHKO Y, GORENFLO R. An operational method for solving fractional diffenertial equations with the Caputo derivatives[J]. Acta Math Vietnam, 1999, 24(6):207-233.
[1] ZHEN Wei-wei, ZENG Jian, REN Jian-long. Time dependent parabolic inverse source problem based on variational theory [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 61-71.
[2] LI Hui-hui, LIU Xi-qiang, XIN Xiang-peng. Differential invariants and exact solutions of variable coefficients Benjamin-Bona-Mahony-Burgers equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 51-60.
[3] . Regularity for solutions of elliptic obstacle problems with subcritical growth [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 57-63.
[4] DONG Ya-ying. Global bifurcation structure in a predator-prey model with a spatial degeneracy [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 76-84.
[5] ZHANG Dao-xiang, SUN Guang-xun, MA Yuan, CHEN Jin-qiong, ZHOU Wen. Hopf bifurcation and spatial patterns in a delayed diffusive predator-prey system with Holling-III functional response and linear harvesting effect [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 85-94.
[6] ZHANG Tai-nian, LI Zhao-xing. Convergence analysis for inverse problems in a degenerate parabolic equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 35-42.
[7] DUAN Shuang-shuang, QIAN Yuan-yuan. The pointwise estimates of solutions to the Cauchy problem of Keller-Segel equations with cross-diffusion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 40-47.
[8] DONG Li. Lower bounds for blow up time of two nonlinear wave equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 56-60.
[9] LI Yu, LIU Xi-qiang. Symmetry, reduction and exact solutions of the extended KP-Benjamin-Bona-Mahoney equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 77-84.
[10] ZHANG Dao-xiang, ZHAO Li-xian, HU Wei. Turing instability induced by cross-diffusion in a three-species food chain model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(1): 88-97.
[11] FU Juan, ZHANG Rui, WANG Cai-jun, ZHANG Jing. The stability of a predator-prey diffusion model with Beddington-DeAngelis functional response [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 115-122.
[12] SONG Meng-meng, SHANG Hai-feng. Cauchy problem for nonlinear parabolic equation systems with initial data measures [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(10): 41-47.
[13] LI Yue-xia, ZHANG Li-na, ZHANG Xiao-jie. Bifurcation structures for the 2-D Lengyel-Epstein system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 74-78.
[14] LUO Li-ping, LUO Zhen-guo, ZENG Yun-hui. (Full)oscillatory problems of certain quasilinear hyperbolic systems with damping term [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 73-77.
[15] CAI Chao. An inverse problem of identifying the coefficient in a Kolmogorov type equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 127-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!