JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (10): 89-94.doi: 10.6040/j.issn.1671-9352.0.2014.371
WANG Xue-bin
CLC Number:
[1] DATSKO B Y, GAFIYCHUK V V. Mathematical modeling of fractional reaction-diffusion systems with different order time derivatives[J]. Journal of Mathematical Sciences, 2010, 165(3):392-402. [2] HILFER R. Applications of fractional calculus in physics[M]. Singapore: World Scientific, 2000. [3] CARPINTERI A, MAINARDI F. Fractals and fractional calculus in continuum mechanics[M]. New York: Springer, 1997: 291-348. [4] METZLER R. Non-homogeneous random walks, generalised master equations, fractional Fokker-Planck equations, and the generalised Kramers-Moyal expansion[J]. The European Physical Journal B: Condensed Matter and Complex Systems, 2001, 19(2):249-258. [5] KEMPPAINEN J. Existence and uniqueness of the solution for a time-fractional diffusion equation[J]. Fractional Calculus and Applied Analysis, 2011, 14(3):411-417. [6] 王学彬.二维、三维空间Riesz分数阶扩散方程的基本解[J].山东大学学报:理学版,2011,46(8):23-30. WANG Xuebin.Fundamental solutions of fractional-in-space diffusion equation with Riesz fractional derivative in two and three dimensions[J]. Journal of Shandong University: Natural Science, 2011, 46(8):23-30. [7] 王学彬,刘发旺.二维和三维的时间分数阶电报方程的解析解[J].山东大学学报:理学版,2012,47(8):114-121. WANG Xuebin, LIU Fawang. Analytical solutions of the time-fractional telegraph equation in two and three dimensions[J]. Journal of Shandong University: Natural Science, 2012, 47(8):114-121. [8] JIANG Hui, LIU Fawang, TURNER I, et al. Analytical solutions for the multi-term time—space Caputo—Riesz fractional advection—diffusion equations on a finite domain[J]. J Math Anal Appl, 2012, 389:1117-1127. [9] PODLUBNY I. Fractional differential equations[M]. New York: Academic Press, 1999. [10] GORENFLO R, MAINARDI F. Random walk models for space-fractional diffusion processes[J]. Fract Calc Appl Anal, 1998, (1):167-191. [11] DIMOVSKI I H. Convolution calculus[M]. Sofia: Bulgarian Academy of Science, 1982. [12] LUCHKO Y, GORENFLO R. An operational method for solving fractional diffenertial equations with the Caputo derivatives[J]. Acta Math Vietnam, 1999, 24(6):207-233. |
[1] | ZHEN Wei-wei, ZENG Jian, REN Jian-long. Time dependent parabolic inverse source problem based on variational theory [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 61-71. |
[2] | LI Hui-hui, LIU Xi-qiang, XIN Xiang-peng. Differential invariants and exact solutions of variable coefficients Benjamin-Bona-Mahony-Burgers equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 51-60. |
[3] | . Regularity for solutions of elliptic obstacle problems with subcritical growth [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 57-63. |
[4] | DONG Ya-ying. Global bifurcation structure in a predator-prey model with a spatial degeneracy [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 76-84. |
[5] | ZHANG Dao-xiang, SUN Guang-xun, MA Yuan, CHEN Jin-qiong, ZHOU Wen. Hopf bifurcation and spatial patterns in a delayed diffusive predator-prey system with Holling-III functional response and linear harvesting effect [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 85-94. |
[6] | ZHANG Tai-nian, LI Zhao-xing. Convergence analysis for inverse problems in a degenerate parabolic equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 35-42. |
[7] | DUAN Shuang-shuang, QIAN Yuan-yuan. The pointwise estimates of solutions to the Cauchy problem of Keller-Segel equations with cross-diffusion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 40-47. |
[8] | DONG Li. Lower bounds for blow up time of two nonlinear wave equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 56-60. |
[9] | LI Yu, LIU Xi-qiang. Symmetry, reduction and exact solutions of the extended KP-Benjamin-Bona-Mahoney equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 77-84. |
[10] | ZHANG Dao-xiang, ZHAO Li-xian, HU Wei. Turing instability induced by cross-diffusion in a three-species food chain model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(1): 88-97. |
[11] | FU Juan, ZHANG Rui, WANG Cai-jun, ZHANG Jing. The stability of a predator-prey diffusion model with Beddington-DeAngelis functional response [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 115-122. |
[12] | SONG Meng-meng, SHANG Hai-feng. Cauchy problem for nonlinear parabolic equation systems with initial data measures [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(10): 41-47. |
[13] | LI Yue-xia, ZHANG Li-na, ZHANG Xiao-jie. Bifurcation structures for the 2-D Lengyel-Epstein system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 74-78. |
[14] | LUO Li-ping, LUO Zhen-guo, ZENG Yun-hui. (Full)oscillatory problems of certain quasilinear hyperbolic systems with damping term [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 73-77. |
[15] | CAI Chao. An inverse problem of identifying the coefficient in a Kolmogorov type equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 127-134. |
|