JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (12): 25-31.doi: 10.6040/j.issn.1671-9352.0.2017.136

Previous Articles     Next Articles

Strongly Gorenstein C-flat modules

LI Jin-lan, LIANG Chun-li   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2017-03-31 Online:2017-12-20 Published:2017-12-22

Abstract: As a generalization of strongly Gorenstein flat modules, the strongly Gorenstein flat modules with respect to a semidualizing modules C, that is, strongly Gorenstein C-flat module are introduced, and some properties and equivalent characterizations are given, for example, the class of Strongly Gorenstein C-flat modules is PC-resolving and closed under direct sums as well as direct summands. Morever, the stability of strongly Gorenstein C-flat modules are investigated.

Key words: strongly Gorenstein flat module, strongly Gorenstein C-flat module, stability, strongly Gorenstein C-projective dimension

CLC Number: 

  • O153.3
[1] ENOCHS E E, JENDA O M G. Gorenstein injective and projective modules[J]. Math Z, 1995, 220:611-633.
[2] HOLM H, JØRGENSEN P. Semi-dualizing modules and related Gorenstein homological dimensions[J]. J Pure Appl Algebra, 2006, 205(2): 423-445.
[3] DING N Q, MAO L X. Gorenstein FP-injective and Gorenstein at modules[J]. J Algebra, 2008, 7:491-506.
[4] DING N Q, LI Y L, MAO L X. Strongly Gorenstein at modules[J]. J Aust Math Soc, 2009, 86:323-338.
[5] GILLESPIE J. Model structures on modules over Ding-Chen rings[J]. Homology Application, 2010, 12: 61-73.
[6] HOLM H, WHITE D. Foxby equivalence over associative rings[J]. Math Kyoto Univ, 2007, 47:781-808.
[7] ENOCHS E E, YASSEMI S. Foxby equivalance and cotorsion theories relative to semidualizing modules[J]. Math Scand, 2004, 95:33-43.
[8] HOLM H. Gorenstein homological dimensions[J]. J Pure Appl Algebra, 2004, 189:167-193.
[9] WHITE D. Gorenstein projective dimension with respect to a semidualizing modules[J]. Comm Algebra, 2006, 34(2):111-137.
[10] TAKAKASHI R, WHITE D. Homological aspects of semidualizing modules[J]. Math Scand, 2008, 106:5-22.
[11] WANG Z P, LIU Z K. Stability of strongly Gorenstein at modules[J]. Vietnam J Math, 2014, 42:171-178.
[12] XU A M, DING N Q. On stability of Gorenstein categories[J]. Comm Algebra, 2013, 41(10):3793-3804.
[13] BOUCHIBA S. Stability of Gorenstein classes of modules[J]. Algebra Colloq, 2013, 20:623-636.
[14] YANG G, LIU Z K. Stability of Gorenstein at categories[J]. Glasg Math J, 2012, 54:177-191.
[15] SATHER-WAGSTAFF S, SHARIF T, WHITE D. Stability of Gorenstein categories[J]. J Lond Math Soc, 2008, 77:481-502.
[1] LIU Hua, YE Yong, WEI Yu-mei, YANG Peng, MA Ming, YE Jian-hua, MA Ya-lei. Study of dynamic of a discrete host-parasitoid model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(7): 30-38.
[2] SONG Liang, FENG Jin-shun, CHENG Zheng-xing. Existence and stability for multiple gabor frames [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 17-24.
[3] BAI Bao-li, ZHANG Jian-gang, DU Wen-ju, YAN Hong-ming. Dynamic behavior analysis of a stochastic SIR epidemic model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 72-82.
[4] HUANG Lei-lei, SONG Xiao-qiu, LU Wei. On polynomial stability of linear discrete-time systems in Banach spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 36-41.
[5] ZHANG Dao-xiang, ZHAO Li-xian, HU Wei. Turing instability induced by cross-diffusion in a three-species food chain model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(1): 88-97.
[6] WANG Chang-hong, WANG Lin-shan. Mean square exponential stability of memristor-based stochastic neural networks with S-type distributed delays [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(5): 130-135.
[7] XUE Wen-ping, JI Pei-sheng. On the HUR stability of a mixed functional equation deriving from AQC mappings in FFNLS [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 1-8.
[8] CAI Chao. An inverse problem of identifying the coefficient in a Kolmogorov type equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 127-134.
[9] SHI Xue-wei, JIA Jian-wen. Study on an SIR epidemic model with information variable and graded cure rate [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(3): 51-59.
[10] FU Juan, ZHANG Rui, WANG Cai-jun, ZHANG Jing. The stability of a predator-prey diffusion model with Beddington-DeAngelis functional response [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 115-122.
[11] LIN Qing-teng, WEI Feng-ying. The stability of stochastic SIQS epidemic model with saturated incidences [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(1): 128-134.
[12] WU Jing-yuan, SHI Rui-qing. Analysis of an SEQIHRS epidemic model with media coverage [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(1): 115-122.
[13] LI Xiang-liang, SUN Yan-ge, LI Ying. Study of the stability of the CO2 aqueous foam [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(11): 32-39.
[14] WANG Xian-fei, JIANG Long, MA Jiao-jiao. Multidimensional backward doubly stochastic differential equations with generators of Osgood type [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(08): 24-33.
[15] FANG Rui, MA Jiao-jiao, FAN Sheng-jun. A stability theorem for solutions of a class of backward stochastic differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(06): 39-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!