JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (11): 52-62.doi: 10.6040/j.issn.1671-9352.0.2018.530
Previous Articles Next Articles
CAO Hui-rong 1, ZHOU Wei1*, CHU Tong2, ZHOU Jie1
CLC Number:
[1] KOO W W, UHM I H. Effects of dumping vs anti-dumping measures the US trade remedy laws applied to wheat imports from Canada[J]. Journal of World Trade, 2007, 41(6): 1163-1184. [2] 严俊樑, 钟根元. 完全信息下实行反倾销措施与补贴措施的静态博弈分析比较[J]. 陕西科技大学学报(自然科学版), 2008, 26(6): 167-171. YAN Junliang, ZHONG Genyuan. Difference research between AD rates and subsidy of static game under complete information[J]. Journal of Shaanxi University of Science & Technology, 2008, 26(6): 167-171. [3] 翁世洲, 朱俊. 政府反倾销与补贴战略实施博弈分析[J]. 现代商贸工业, 2017(8): 43-44. WENG Shizhou, ZHU Jun. Game analysis on the implementation of governments anti-dumping and subsidy strategy[J]. Modern Business Trade Industry, 2017(8): 43-44. [4] 江东坡, 朱满德. 双寡头竞争下的反倾销与补贴政策比较[J]. 华东经济管理, 2015, 29(5): 97-102. JIANG Dongpo, ZHU Mande. Comparison of antidumping tariff and production subsidy under oligopoly[J]. East China Economic Management, 2015, 29(5): 97-102. [5] COURNOT A A. Recherches sur les principes mathematiques de la theorie des richesses[M]. Paris: Hachette Livre-Bnf, 1838. [6] RAND D. Exotic phenomena in games and duopoly models[J]. Journal of Mathematical Economics, 1978, 5(2): 173-184. [7] DAY D, CHEN P. Nonlinear dynamics and evolutionary economics[C] //The Robustness of Bubbles and Crashes in Experimental Stock Markets, [S.l.] :[s.n.] , 1993. [8] ELSADANY A A. Dynamics of a Cournot duopoly game with bounded rationality based on relative profit maximization[J]. Applied Mathematics and Computation, 2017, 294: 253-263. [9] TRAMONTANA F, ELSADANY A A, XIN B G, et al. Local stability of the Cournot solution with increasing heterogeneous competitors[J]. Nonlinear Analysis: Real World Applications, 2015, 26: 150-160. [10] PENG Y, LU Q, XIAO Y. A dynamic Stackelberg duopoly model with different strategies[J]. Chaos, Solitons & Fractals, 2016, 85: 128-134. [11] AHMED E, ELSADANY A A, PUU T. On Bertrand duopoly game with differentiated goods[J]. Applied Mathematics and Computation, 2015, 251: 169-179. [12] BRIANZONI S, GORI L, MICHETTI E. Dynamics of a Bertrand duopoly with differentiated products and nonlinear costs: analysis, comparisons and new evidences[J]. Chaos, Solitons & Fractals, 2015, 79: 191-203. [13] FANTI L, GORI L, MAMMANA C, et al. The dynamics of a Bertrand duopoly with differentiated products: synchronization, intermittency and global dynamics[J]. Chaos, Solitons & Fractals, 2013, 52: 73-86. [14] CAVALLI F, NAIMZADA A. A Cournot duopoly game with heterogeneous players: nonlinear dynamics of the gradient rule versus local monopolistic approach[J]. Applied Mathematics and Computation, 2014, 249: 382-388. [15] MA J H, GUO Z B. The influence of information on the stability of a dynamic Bertrand game[J]. Communications in Nonlinear Science and Numerical Simulation, 2016, 30(1/2/3): 32-44. [16] ZHOU J, ZHOU W, CHU T, et al. Bifurcation, intermittent chaos and multi-stability in a two-stage Cournot game with R& D spillover and product differentiation[J]. Applied Mathematics and Computation, 2019, 341: 358-378. [17] 姚洪兴, 王梅. 动态Bertrand模型的复杂现象与混沌控制[J]. 陕西师范大学学报(自然科学版), 2015, 43(2): 24-27. YAO Hongxing, WANG Mei. The complex phenomena and the chaos control of Bertrand model[J]. Journal of Shaanxi Normal University(Natural Science Edition), 2015, 43(2): 24-27. [18] BISCHI G I, NAIMZADA A. Global analysis of a dynamic duopoly game with bounded rationality[J]. Advances in Dynamic Games and Applications, 2000, 5: 361-385. |
[1] | CHEN Lu, ZHANG Xiao-guang. Research of an epidemic model on adaptive networks [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(9): 76-82. |
[2] | LU Zheng-yu, ZHOU Wei, YU Huan-huan, ZHAO Na. Dynamic analysis of game model considering advertising spillover effect [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(11): 63-70. |
[3] | LI Le-le, JIA Jian-wen. Hopf bifurcation of a SIRC epidemic model with delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(1): 116-126. |
[4] | LIU Hua, YE Yong, WEI Yu-mei, YANG Peng, MA Ming, YE Jian-hua, MA Ya-lei. Study of dynamic of a discrete host-parasitoid model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(7): 30-38. |
[5] | ZHANG Dao-xiang, SUN Guang-xun, MA Yuan, CHEN Jin-qiong, ZHOU Wen. Hopf bifurcation and spatial patterns in a delayed diffusive predator-prey system with Holling-III functional response and linear harvesting effect [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 85-94. |
[6] | DONG Ya-ying. Global bifurcation structure in a predator-prey model with a spatial degeneracy [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 76-84. |
[7] | BAI Bao-li, ZHANG Jian-gang, DU Wen-ju, YAN Hong-ming. Dynamic behavior analysis of a stochastic SIR epidemic model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 72-82. |
[8] | LI Yue-xia, ZHANG Li-na, ZHANG Xiao-jie. Bifurcation structures for the 2-D Lengyel-Epstein system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 74-78. |
[9] | SHI Xue-wei, JIA Jian-wen. Study on an SIR epidemic model with information variable and graded cure rate [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(3): 51-59. |
[10] | LI Xiao-yan, XU Man. Existence and multiplicity of nontrivial solutions of Dirichlet problems for second-order impulsive differential equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 29-35. |
[11] | LI Hai-xia. Coexistence solutions for a predator-prey model with additive Allee effect and a protection zone [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(09): 88-94. |
[12] | WU Dai-yong, ZHANG Hai. Stability and bifurcation analysis for a single population discrete model with Allee effect and delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(07): 88-94. |
[13] | ZHANG Lu, MA Ru-yun. Bifurcation structure of asymptotically linear second-order #br# semipositone discrete boundary value problem#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 79-83. |
[14] | FENG Xiao-zhou1,2, NIE Hua2. Bifurcation solutions and stability of a predator-prey system with predator saturation and competition [J]. J4, 2012, 47(5): 103-107. |
[15] | CHEN Si-yang, LIU Xiao-na. Stability and bifurcation analysis of the model with interference and piecewise constant variables [J]. J4, 2012, 47(11): 109-118. |
|