JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (10): 46-51.doi: 10.6040/j.issn.1671-9352.0.2020.256

Previous Articles     Next Articles

q-Cartan matrices of self-injective Nakayama algebras

ZHAO Tiao, ZHANG Chao*   

  1. School of Mathematics and Statistics, Guizhou University, Guiyang 550025, Guizhou, China
  • Online:2020-10-20 Published:2020-10-07

Abstract: The present paper mainly proves that the q-Cartan matrix of any self-injective Nakayama algebra A is diagonalizable and the determinant of q-Cartan|CA(q)|={(1-(qn)m)/(1-qn), if(n,m)=1;((1-q[m,n])(m,n))/(1-qn),if (n,m)≠1,where n is the number of simple modules, m is the length of the shortest paths in the homogeneous ideal I, and (n,m) is the greatest common divisor of n and m, [n,m] is the least common multiple of n and m.

Key words: Cartan determinant, diagonalizable matrix, circulant matrix

CLC Number: 

  • O153.3
[1] EILENBERG S. Algebras of cohomologically finite dimension[J]. Commentarii Mathematici Helvetici, 1954, 28(1):310-319.
[2] JANS J P, NAKAYAMA T. On the dimension of modules and Algebras, VII. Algebras with finite-dimensional residue-algebras[J]. Nagoya Mathematical Journal, 1957, 11:67-76.
[3] ZACHARIA D. On the Cartan matrix of an Artin algebra of global dimension two[J]. Journal of Algebra, 1983, 82(2):353-357.
[4] BURGESS W D, FULLEER K R, VOSS E R, et al. The Cartan matrix as an indicator of finite global dimension for Artinian rings[J]. Proceedings of the American Mathematical Society, 1985, 95(2):157-165.
[5] HOLM T. Cartan determinants for gentle algebras[J]. Archiv der Mathematik, 2005, 85(3):233-239.
[6] BESSENRODT C, HOLM T. q-Cartan matrices and combinatorial invariants of derived categories for skewed-gentle algebras[J]. Pacific Journal of Mathematics, 2007, 229(1):25-47.
[7] ASSEM I, SIMSON D, SKOWRONSKI A. Elements of the representation theory of associative algebras: Vol.1: techniques of representation theory[M]. Cambridge: Cambridge University Press, 2006.
[8] GUSTAFSON W H. Global dimension in serial rings[J]. Journal of Algebra, 1985, 97(1):14-16.
[9] MADSEN D. Projective dimensions and Nakayama algebras[J]. Representations of Algebras and Related Topics, 2005: 247-265.
[10] RINGEL C M. The Gorenstein projective modules for the Nakayama algebras. I[J]. Journal of Algebra, 2013, 385:241-261.
[11] CHEN Xiao-wu, YE Yu. Retractions and Gorenstein homological properties[J]. Algebras and Representation Theory, 2014, 17(3):713-733.
[12] SHEN Dawei. The singularity category of a Nakayama algebra[J]. Journal of Algebra, 2015, 429:1-18.
[13] 谢宗真, 张孝金, 昝立博. 自内射的Nakayama代数的嘉当矩阵[J]. 南京大学学报(数学半年刊), 2017, 34(2):155-169. XIE Zongzhen, ZHANG Xiaojin, ZAN Libo. The Cartan matrice of self-injective Nakayama algebras[J]. Journal of Nanjing University(Mathematical Biquarterly), 2017, 34(2):155-169.
[1] ZHANG Cui-ping, LIU Ya-juan. Strongly Gorenstein C-injective module and strongly Gorenstein C-flat module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 24-30.
[2] ZHAO Yang, ZHANG Wen-hui. Strongly Ding projective and strongly Ding injective modules over formal triangular matrix rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 37-45.
[3] GUO Hui-ying, ZHANG Cui-ping. Ext-strong Ding projective modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 31-36.
[4] WANG Zhan-ping, YUAN Kai-ying. Strongly Gorenstein injective modules with respect to a cotorsion pair [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 102-107.
[5] WU Xiao-ying, WANG Fang-gui. Graded version of Enochs theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 22-26.
[6] CHENG Cheng, ZOU Shi-jia. Irreducible splitting trace module of a class of Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 11-15.
[7] ZHU Lin. Separated monic representations of quivers of type A4and RSS equivalences [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 1-8.
[8] GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15.
[9] WANG Hui-xing, CUI Jian, CHEN Yi-ning. Nil *-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 16-24.
[10] LU Dao-wei, WANG Zhen. L-R smash product for bialgebroids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 32-35.
[11] LI Jin-lan, LIANG Chun-li. Strongly Gorenstein C-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 25-31.
[12] . Gelfand-Krillov dimension of quantized enveloping algebra Uq(An) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 12-17.
[13] SUN Yan-zhong, YANG Xiao-yan. Gorenstein AC-projective modules with respect to a semidualizing module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 31-35.
[14] MA Xin, ZHAO You-yi, NIU Xue-na. Homology resolutions and homological dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 18-23.
[15] CHEN Hua-xi, XU Qing-bing. The fundamental theorem forAMHH in Yetter-Drinfeld module categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 107-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Jing-you, ZHANG Pei-ai, ZHONG Hai-ping. The application of evolutionary graph theory in the design of knowledge-based enterprises’ organization strucure[J]. J4, 2013, 48(1): 107 -110 .
[2] SHI Kai-quan. P-information law intelligent fusion and soft information #br# image intelligent generation[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(04): 1 -17 .
[3] ZHANG Ling ,ZHOU De-qun . Research on the relationships among the λ fuzzy measures, Mbius representation and interaction representation[J]. J4, 2007, 42(7): 33 -37 .
[4] WANG Bi-yu, CAO Xiao-hong*. The perturbation for the Browder’s theorem of operator matrix#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 90 -95 .
[5] HU Xuan-zi1, XIE Cun-xi2. A robot local path plan based on artificial immune network[J]. J4, 2010, 45(7): 122 -126 .
[6] FU Hai-yan,LU Chang-jing,SHI Kai-quan . (F,F-)-law inference and law mining[J]. J4, 2007, 42(7): 54 -57 .
[7] . Multiplicative Jordan triple isomorphisms on Jordan algebras[J]. J4, 2009, 44(6): 1 -3 .
[8] YAN Peng, SHEN Yanjun, WANG Jianfeng. Stability analysis of a class of neutral type singular systems[J]. J4, 2009, 44(4): 66 -71 .
[9] AN Yunhe, CAI Zhaoping, ZHANG Wei, HUANG Shuhong, YANG Ling, ZHANG Hongwei. Identification, phylogenetic analysis and expression of
a novel Rbx1 homologous gene in amphioxus
[J]. J4, 2009, 44(3): 11 -16 .
[10] PANG Yong,MU Zong-zhao,WANG Yue-hai,BAO Yu-hai,SUN Lei . Transpiration characteristics and its influencing factors of sixteen polar clones[J]. J4, 2006, 41(6): 168 -172 .