### Structure of weakly type σ semigroups

GONG Chun-mei, GAO Wen, YUAN Ying

1. School of Science, Xian University of Architecture and Technology, Xian 710055, Shaanxi, China
• Published:2020-07-14

Abstract: The definition of weakly type σ semigroups is given and the quasispinded product structure of weakly type σ semigroups is established. It is proved that a semigroup S is a weakly typeσ semigroup if and only ifS is a quasispinded product of a semiadequate semigroup T and a left regular band I.

CLC Number:

• O152.7
 [1] PASTIJN F. A representation of a semigroup by a semigroup of matrices over a group with zero[J]. Semigroup Forum, 1975, 10:238-249.[2] FOUNTAIN J B. Abundant semigroups[J]. Proc London Math Soc, 1982, 44(3):103-129.[3] LAWSON M V. Rees matrix semigroups[J]. Proc Edinburgh Math Soc, 1990, 33:23-37.[4] 朱聘瑜, 郭聿琦, 岑嘉评. 左Clifford半群的特征与结构[J]. 中国科学(A辑), 1991, 6:582-590. ZHU Pinyu, GUO Yuqi, SHUM Kar Ping. Characteristics and structure of left Clifford semigroups[J]. Science in China(Series A), 1991, 6:582-590.[5] 任学明, 岑嘉评. L *-逆半群的结构[J]. 中国科学(A辑), 2006, 36(7):745-756. REN Xueming, SHUM Kar Ping. The structure of L *-inverse semigroups[J]. Science in China(Series A), 2006, 36(7):745-756.[6] YUAN Ying, REN Xueming. The structure of( ~)/L -inverse semigroup[J]. Communications in Algebra, 2018, 46(2):480-493.[7] GUO Xiaojiang. On the structure of type σ semigroups[J]. Journal of Lanzhou University, 1996, 32:4-9.[8] LAWSON M V. Semigroups and ordered categories: I. the reduced case[J]. J Algebra, 1991, 141:422-462.[9] LAWSON M V. The natural partial order on an abundant semigroup[J]. Proc Edinburgh Math Soc, 1987, 30(2):169-186.[10] YAO Huiling, CHEN Yizhi, LI Yonghua. IC quasi-semiadequate semigroups satisfying the congruence condition[J]. Pure Mathematics and Applications, 2010, 21(1):79-98.
 [1] SUN Shuang, LIU Hong-xing. The inclusion graph of S-acts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 121-126. [2] KONG Xiang-jun, WANG Pei. Good congruences associated with multiplicative quasi-adequate transversals [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 1-3. [3] LIANG Xing-liang, WU Su-peng, REN Jun. Characterization of monoids by C(P')acts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 9-13. [4] SHAO Yong. Semilattice-ordered completely regular periodic semigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 1-5. [5] WANG Dan, WANG Zheng-pan. Characterizing a band variety in terms of forbidden subsemigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 6-8. [6] QIAO Hu-sheng, SHI Xue-qin. On homological classification of weakly torsion free Rees factor S-posets [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(8): 49-52. [7] GONG Chun-mei, FENG Li-xia, REN Xue-ming. (*,~)-good congruences on completely J *,~-simple semigroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 11-16. [8] WANG Shou-feng. λ-Semidirect products of regular semigroups with a multiplicative inverse transversal [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 20-23. [9] QIAO Hu-sheng, ZHAO Ting-ting. On products of S-acts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 16-19. [10] WANG Yong-duo, MA Ya-jun. Simple dual Rickart modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 5-9. [11] QIAO Hu-sheng, LIAO Min-ying. GP-coherent monoids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 1-4. [12] LUO Yong-gui. Maximal(regular)subsemigroups of the semigroup W(n,r) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 7-11. [13] QIAO Hu-sheng, JIN Wen-gang. On monoids over which all weakly injective right S-acts are regular [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 1-3. [14] WANG Yong-duo, HE Jian. Characterizations of rings relative to an ideal [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 81-84. [15] WANG Shou-feng. Prehomomorphisms and restricted products of regular semigroups with a multiplicative inverse transversal [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 90-93.
Viewed
Full text

Abstract

Cited

Shared
Discussed