JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2022, Vol. 57 ›› Issue (12): 75-80.doi: 10.6040/j.issn.1671-9352.0.2021.807

Previous Articles    

Irreducible representations of Ore extensions of enveloping algebra of two-dimensional non-abelian Lie algebra

LI Shi-yu, CHEN Chen, CHEN Hui-xiang*   

  1. School of Mathematical Sciences, Yangzhou University, Yangzhou 225002, Jiangsu, China
  • Published:2022-12-05

Abstract: The irreducible representations of three classes of Hopf-Ore extensions of the enveloping algebra of 2-dimensional non-abelian Lie algebra over an algebraically closed field of characteristic zero are studied. The structures and isomorphism classifications of the finite dimensional simple modules over the three classes of Ore extensions are given respectively.

Key words: Hopf algebra, enveloping algebra, Ore extension, irreducible representation, simple module

CLC Number: 

  • O152.5
[1] ANDRUSKIEWITSCH N, SCHNEIDER H J. On the classification of finite-dimensional pointed Hopf algebras[J]. Annals of Mathematics, 2010, 171(1):375-417.
[2] ANGIONO I, IGLESIAS A G. Liftings of Nichols algebras of diagonal type II: all liftings are cocycle deformations[J]. Selecta Mathematics(NS), 2019, 25(1):1-95.
[3] BEATTIE M, DASCALESCU S, GRUNENFELDER L. On the number of types of finite dimenional Hopf algebras[J]. Inventiones Mathematicae, 1999, 136(1):1-7.
[4] BEATTIE M, DASCALESCU S, GRUNENFELDER L. Constructing pointed Hopf algebras by Ore extensions[J]. Journal of Algebra, 2000, 225(2):743-770.
[5] PANOV A N. Ore extensions of Hopf algebras[J]. Mathematical Notes, 2003, 74(3):401-410.
[6] KROP L, RADFORD D E. Finite-dimensional Hopf algebras of rank one in characteristic zero[J]. Journal of Algebra, 2006, 302(1):214-230.
[7] SCHEROTZKE S. Classification of pointed rank one Hopf algebras[J]. Jouenal of Algebra, 2008, 319(7):2889-2912.
[8] WANG Zhen, YOU Lan, CHEN Huixiang. Representations of Hopf-Ore extensions of group algebras and pointed Hopf algebras of rank one[J]. Algebras and Representation Theory, 2015, 18(3):801-830.
[9] WANG Dingguo, ZHANG J Jian, ZHUANG Guangbing. Primitive cohomology of Hopf algebras[J]. Journal of Algebra, 2016, 464:36-96.
[10] BROWN K A, O'HAGAN S, ZHANG J Jian, ZHUANG Guangbing. Connected Hopf algebras and iterated Ore extensions[J]. Journal of Pure and Applied Algebra, 2015, 219(6):2405-2433.
[11] ZHOU Guisong, SHEN Yuan, LU Diming. The structure of connected(graded)Hopf algebras[J]. Advances in Mathematics, 2020, 372:107-292.
[12] YOU Lan, WANG Zhen, CHEN Huixiang. Generalized Hopf-Ore extensions[J]. Journal of Algebra, 2018, 508:390-417.
[13] SWEEDLER M E. Hopf algebra[M]. New York: Benjamin, 1969.
[14] KASSEL C. Quantum groups[M]. New York: Spring-Verlag, 1995.
[15] MONTGOMERY S. Hopf algebras and their actions on rings[M]. Rhode Island: AMS, 1993.
[1] ZHANG Yu-xin, ZHENG Si-hang, FANG Ying, ZHENG Hui-hui, ZHANG Liang-yun. Rota-Baxter paired module system and curved Rota-Baxter paired module system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(8): 6-14.
[2] LI Fang-shu, LI Lin-han, ZHANG Liang-yun. Construction of 3-Leibniz algebras and their Rota-Baxter operators [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(4): 48-53.
[3] SHI Guo-dong. First fundamental theorem and Long dimodules for group-graded Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(4): 25-31.
[4] CHEN Chen, GAO Ying-ying, CHEN Hui-xiang. Lazy 2-cocycles on 9-dimensional Taft algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(2): 73-78.
[5] DAI Li. Z2-extensions of a pointed fusion category and applications [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(12): 93-96.
[6] QIAO Ning, FANG Ying, ZHANG Liang-yun. Structure of Poisson algebras on Sweedler 4-dimensional Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(12): 56-62.
[7] ZHANG Qian, LI Xuan, LI Xin, ZHENG Hui-hui, LI Lin-han, ZHANG Liang-yun. The construct of Rota-Baxter algebra on the Sweedler 4-dimensional Hopf algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(6): 47-52.
[8] CHEN Hua-xi, XU Qing-bing. The fundamental theorem forAMHH in Yetter-Drinfeld module categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 107-110.
[9] WANG Wei. Hopf algebra structures on unified products and smash coproducts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 9-13.
[10] GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15.
[11] . Gelfand-Krillov dimension of quantized enveloping algebra Uq(An) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 12-17.
[12] YU Xiao-lan. Global dimensions of cocycle deformations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 39-43.
[13] XIE Zong-zhen, ZHANG Xiao-jin. On algebras with all τ-rigid modules projective [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 16-20.
[14] GUO Shuang-jian, LI Yi-zheng. Semisimplicity of the categories of Hom-Yetter-Drinfeld modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 17-23.
[15] JIA Ling, CHEN Xiao-yuan. A duality theorem for a Yetter-Drinfeld Hopf algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 98-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!