1 |
姚凯, 涂平, 陈宇新, 等. 基于多源大数据的个性化推荐系统效果研究[J]. 管理科学, 2018, 31 (5): 3- 15.
|
|
YAO Kai , TU Ping , CHEN Yuxin , et al. Research on the effectiveness of personalized recommender system based on multi-source big data[J]. Journal of Management Science, 2018, 31 (5): 3- 15.
|
2 |
朱志国, 周雨禾, 王谢宁. 移动商务中融合签到位置与用户间相似性的兴趣点精准推荐[J]. 系统工程理论与实践, 2020, 40 (2): 462- 469.
|
|
ZHU Zhiguo , ZHOU Yuhe , WANG Xiening . Recommendation of POI by integrating user similarity and location information in mobile commerce[J]. Systems Engineering-Theory & Practice, 2020, 40 (2): 462- 469.
|
3 |
仲秋雁, 李晨, 崔少泽. 考虑工人参与意愿影响因素的竞争式众包任务推荐方法[J]. 系统工程理论与实践, 2018, 38 (11): 2954- 2965.
|
|
ZHONG Qiuyan , LI Chen , CUI Shaoze . Task recommendation method based on the influencing factors of crowdsourcing contest participating willingness[J]. Systems Engineering-Theory & Practice, 2018, 38 (11): 2954- 2965.
|
4 |
何婧, 胡杰. 融合矩阵分解和XGBoost的个性化推荐算法[J]. 重庆大学学报, 2021, 44 (1): 78- 87.
|
|
HE Jing , HU Jie . Personalized recommendation system based on matrix factorization and XGBoost algorithm[J]. Journal of Chongqing University, 2021, 44 (1): 78- 87.
|
5 |
贾俊杰, 刘鹏涛, 陈旺虎. 融合社交信息的矩阵分解改进推荐算法[J]. 计算机工程, 2021, 47 (9): 97- 105.
|
|
JIA Junjie , LIU Pengtao , CHEN Wanghu . Matrix factorization improved recommendation algorithm based on social information[J]. Computer Engineering, 2021, 47 (9): 97- 105.
|
6 |
陈树龙. 基于矩阵分解的推荐算法研究[D]. 湖南: 国防科技大学, 2018.
|
|
CHEN Shulong. Research on recommendation algorithm based on matrix factorization[D]. Hunan: National University of Defense Technology, 2018.
|
7 |
MA H, ZHOU D Y, LIU C, et al. Recommender systems with social regularization[C]//Proceedings of the fourth ACM international conference on Web search and data mining (WSDM'11), New York: Association for Computing Machinery, 2011: 287-296.
|
8 |
王扬, 吴凡, 姚宗强, 等. 基于正则化矩阵分解的用户用电行为分析[J]. 计算机应用, 2017, 37 (8): 2405- 2409.
|
|
WANG Yang , WU Fan , YAO Zongqaing , et al. Residential electricity consumption analysis based on regularized matrix factorization[J]. Journal of Computer Applications, 2017, 37 (8): 2405- 2409.
|
9 |
林婉莹. 图书推荐系统中提升Top-N列表多样性算法研究[D]. 北京: 北京邮电大学, 2019.
|
|
LIN Wanying. Research on improving Top-N list diversity algorithm in book recommendation system[D]. Beijing: Beijing University of Posts and Telecommunications, 2019.
|
10 |
胡炳文. 基于项目相似度改进的协同过滤TopN推荐算法研究[D]. 安徽: 安徽理工大学, 2016.
|
|
HU Bingwen. Collaborative filtering TopN-recommendation algorithm based on the improved similarity research[D]. Anhui: Anhui University of Science and Technology, 2016.
|
11 |
赵向宇. Top-N协同过滤推荐技术研究[D]. 北京: 北京理工大学, 2014.
|
|
ZHAO Xiangyu. Research on Top-Nrecommendation with collaborative filtering[D]. Beijing: Beijing Institute of Technology, 2014.
|
12 |
史达, 于淼川, 李梦琪. 基于用户隐式数据的个性化酒店推荐算法[J]. 山东大学学报(理学版), 2021, 56 (7): 1- 10.
|
|
SHI Da , YU Miaochuan , LI Mengqi . Personalized hotel recommendation algorithm based on user implicit data[J]. Journal of Shandong University (Natural Science), 2021, 56 (7): 1- 10.
|
13 |
彭滢, 吴子君. 基于客户消费行为的4G资费套餐推荐建模研究[J]. 移动通信, 2017, 41 (8): 85- 90.
|
|
PENG Ying , WU Zijun . Investigation on 4G tariff plan recommendation model based on customer consumption behaviors[J]. Mobile Communications, 2017, 41 (8): 85- 90.
|
14 |
张铁军, 雒兴刚, 蔡莉青, 等. 基于顾客选择行为的移动资费套餐优化模型[J]. 系统工程理论与实践, 2014, 34 (2): 444- 450.
|
|
ZHANG Tiejun , LUO Xinggang , CAI Liqing , et al. Optimization model for mobile billing suite based on customer choice anaylsis[J]. Systems Engineering-Theory & Practice, 2014, 34 (2): 444- 450.
|
15 |
王学民. 应用多元统计分析[M]. 上海: 上海财经大学出版社, 2017.
|
|
WANG Xuemin . Applied multivariate statistical analysis[M]. Shanghai: Shanghai University of Finance and Economics Press, 2017.
|
16 |
吴宾, 娄铮铮, 叶阳东. 联合正则化的矩阵分解推荐算法[J]. 软件学报, 2018, 29 (9): 2681- 2696.
|
|
WU Bin , LOU Zhengzheng , YE Yangdong . Co-regularized matrix factorization recommendation algorithm[J]. Journal of Software, 2018, 29 (9): 2681- 2696.
|
17 |
薛永基, 熊海涛, 翟祥, 等. 客户关系管理—理论、技术与实践[M]. 北京: 人民邮电出版社, 2013.
|
|
XUE Yongji , XIONG Haitao , ZHAI Xiang , et al. Customer Relationship Management: Theory, Technology and Practice[M]. Beijing: Posts & Telecom Press, 2013.
|
18 |
赵萌, 齐佳音. 基于购买行为RFM及评论行为RFMP模型的客户终身价值研究[J]. 统计与信息论坛, 2014, 29 (9): 91- 98.
|
|
ZHAO Meng , QI Jiayin . The research of customer lifetime value based on the combination of customer purchase's RFM and customer online review's RFMP[J]. Statistics & Information Forum, 2014, 29 (9): 91- 98.
|
19 |
BOOKER Q E . Automating "word of mouth" to recommend classes to students: an application of social information filtering algorithms[J]. Journal of College Teaching & Learning, 2009, 6 (3): 39- 44.
|
20 |
BALABANOVIC M , SHOHAM Y . Fab: content-based, collaborative recommendation[J]. Communications of the ACM, 1997, 40 (3): 66- 72.
|
21 |
KOENIGSTEIN N, DROR G, KOREN Y. Yahoo! music recommendations: modeling music ratings with temporal dynamics and item taxonomy[C]//Proceedings of the Fifth ACM Conference on Recommender Systems (RecSys'11), New York: Association for Computing Machinery, 2011: 165-172.
|
22 |
项亮. 推荐系统实践[M]. 北京: 人民邮电出版社, 2012.
|
|
XIANG Liang . Practice of recommender systems[M]. Beijing: Posts & Telecom Press, 2012.
|