JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (9): 81-93.doi: 10.6040/j.issn.1671-9352.0.2022.007

Previous Articles     Next Articles

Personalized recommendation of mobile users by integrating basic information and communication behavior

Xianjun WU1,2(),Shaoshi TANG2,Mingqiu WANG2,*()   

  1. 1. School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan 430073, Hubei, China
    2. School of Statistics and Data Science, Qufu Normal University, Jining 273165, Shandong, China
  • Received:2021-12-24 Online:2023-09-20 Published:2023-09-08
  • Contact: Mingqiu WANG E-mail:wuxjun152@163.com;mqwang@qfnu.edu.cn

Abstract:

Considering the factors which affect the mobile users' product ordering, this paper proposes a new matrix factorization model integrating the basic information and communication behavior of the mobile users, and compares the performance of the proposed method with the traditional model on the prediction of rating and Top-N recommendation. For the prediction of rating, some indices are adjusted in the RFM model by combining with the characteristics of mobile users in the product ordering process. Then a user-product rating matrix, constructed by the adjusted RFM model, can accurately and objectively reflect the users' preference for products. For the Top-N recommendation, a negative sampling method is adopted that popular products with no ordering behavior are preferred to be included in the negative samples. The numerical results show that the proposed method performs better.

Key words: mobile users, matrix factorization model, RFM model, rating prediction, Top-N recommendation

CLC Number: 

  • TP391

Table 1

Descriptions of target products"

产品类型 产品编号 产品名称 产品内容示例
流量类产品 1 流量扩容 每月消费20元, 享每月2 GB国内流量扩容
2 定向流量 9元15 GB某APP定向流量(可选择抖音、爱奇艺, 网易云等多款热门APP之一)
3 快消包 10元5 GB国内流量, 7 d内有效
4 假期包 暑期30元30 GB流量
5 模组升档 升50元流量模组, 享打折优惠或共享流量产品
语音类产品 6 语音扩容 每月消费25元, 享每月100 min国内语音扩容
7 语音翻番包 语音翻番包10元80 min
权益类产品 8 双V会员 30元包随心选会员+咪咕视频黄金会员+30 GB定向流量
9 车主会员 车主会员10元/月, 享免费洗车及加油打折优惠
10 尊享会员 车主会员3元/月, 享权益汇产品优惠
11 手机直播包 咪咕视频黄金会员+15 GB咪咕视频流量
12 美食生活礼包 15元享美团、饿了么会员任选其一+1 GB国内通用流量
13 长期提速包 达量限速套餐客户订购长期提速包可以解除限速
14 视频彩铃 为主叫用户提供有趣的视频媒体代替普通网络回铃音
15 点播年包 魔百和电影+电视剧组合年包199元

Table 2

Descriptions of users′ indices"

数据类型 字段名称 中文解释 来源表
用户基础属性信息 nat_age_year 用户年龄 dw_product_ageinfo_202012
sex_id 用户性别 dw_product_ageinfo_202012
user_online 在网时长 dw_cust_label_monthone_202012
用户通信行为信息 arpu_avg 实际消费金额均值 dw_newbusi_product_gprs
arpu_std 实际消费金额方差 dw_newbusi_product_gprs
dou_avg 流量均值 dw_newbusi_product_gprs
dou_std 流量方差 dw_newbusi_product_gprs
bhd_avg 饱和度均值 dw_product_bhd_user_mm
bhd_std 饱和度方差 dw_product_bhd_user_mm
dou_overfee_avg 流量超套费用均值 dw_acct_newbusi_mm
dou_overfee_std 流量超套费用方差 dw_acct_newbusi_mm
dou_overfee_cn 流量超套次数 dw_acct_newbusi_mm
mou_avg 语音均值 dw_newbusi_call_overpkg
mou_std 语音方差 dw_newbusi_call_overpkg
mou_overfee_avg 语音超套费用均值 dw_newbusi_call_overpkg
mou_overfee_std 语音超套费用方差 dw_newbusi_call_overpkg
mou_overfee_cn 语音超套次数 dw_newbusi_call_overpkg
用户订购行为信息 recency 最近订购时间 dw_product_priv_accept_ds
time 产品使用时长 dw_product_priv_accept_ds
frequency 业务订购频率 dw_product_priv_accept_ds
monetary 订购金额 dw_product_priv_accept_ds

Table 3

Significance of indices(p)"

用户指标 产品编号
1 2 3 4 5
nat_age_year 0.000 8*** 5.94e-05*** 0.220 < 2e-16*** 0.265
sex_id 0.001** 2.54e-12*** < 2e-16*** 7.68e-06*** < 2e-16***
user_online 0.548 1.72e-07*** 0.770 9.61e-05*** 0.103
arpu_avg 2.05e-15*** 0.010* 0.0003*** 0.192 0.237
arpu_std 0.064Δ 0.029* 2.68e-06*** 0.003** 0.014*
dou_avg 0.002** 3.49e-06*** 0.986 0.212 0.319
dou_std 0.649 0.008** 0.438 0.833 0.239
bhd_avg 0.000 7*** 0.516 0.162 0.397 0.239
bhd_std 0.000 7*** 0.570 0.141 0.330 0.213
overgprs_fee_avg 0.000 2*** 0.093Δ 0.378 0.307 0.114
overgprs_fee_std 0.028* 0.659 2.45e-05*** 0.193 0.000 6***
overgprs_flag 0.004** 0.457 < 2e-16*** 0.351 6.5e-05***
mou_avg 0.544 0.831 0.000 2*** 0.067Δ 0.051 1 Δ
mou_std 0.726 0.815 0.009** 0.742 0.010*
overcall_fee_avg 0.367 0.982 0.000 7*** 0.139 0.024*
overcall_fee_std 0.018* 0.144 0.000 5*** 0.195 0.002**
overcall_flag 2.53e-05*** 0.000 5*** 0.076Δ 0.352 0.004**
用户指标 产品编号
6 7 8 9 10
nat_age_year 0.005** 1.09e-07*** 0.021* 1.15e-07*** 0.001**
sex_id 0.000 2*** 5.61e-10*** < 2e-16*** 1.61e-12*** 5.88e-09***
user_online 0.494 0.867 0.0004*** 0.011* 0.003**
arpu_avg 4.66e-14*** 0.301 0.056Δ 0.523 1.12e-09***
arpu_std 0.731 0.010* 6.94e-05*** 0.166 0.513
dou_avg 0.010** 0.000 6*** 0.922 0.001** 0.496
dou_std 0.045* 0.773 0.647 0.002** 0.086Δ
bhd_avg 0.421 0.453 0.900 0.595 0.204
bhd_std 0.410 0.780 0.864 0.664 0.191
overgprs_fee_avg 0.219 0.883 0.313 0.110 0.002**
overgprs_fee_std 0.327 0.239 0.000 8*** 0.049* 0.633
overgprs_flag 0.094Δ 0.282 0.926 6.95e-10*** 0.026*
mou_avg 9.12e-11*** 0.853 0.854 0.009** 0.002**
mou_std 0.844 0.010** 0.705 0.077Δ 0.188
overcall_fee_avg 0.271 0.180 0.088Δ 0.084Δ 0.323
overcall_fee_std 0.011* 0.010** 0.443 0.232 0.060Δ
overcall_flag 0.035* 0.002** 0.235 0.035* 0.005**
用户指标 产品编号
11 12 13 14 15
nat_age_year 0.125 7.56e-13*** < 2e-16*** 2.04e-06*** 3.94e-06***
sex_id 0.011* 6.85e-08*** < 2e-16*** 1.40e-06*** < 2e-16***
user_online 0.425 9.23e-07*** 0.107 0.213 0.279
arpu_avg 0.368 0.034* 3.50e-06*** 0.042* 4.35e-12***
arpu_std 0.229 0.010** 7.19e-06*** 0.324 0.227
dou_avg 0.073Δ 0.210 8.77e-06*** 0.035* 1.20e-10***
dou_std 0.513 0.013* 0.080Δ 0.079Δ 0.002**
bhd_avg 0.619 0.599 0.018* 0.606 0.376
bhd_std 0.728 0.628 0.039* 0.619 0.211
overgprs_fee_avg 0.896 0.135 0.130 0.980 0.169
overgprs_fee_std 0.484 0.009** 0.047* 0.626 0.714
overgprs_flag 0.546 0.363 < 2e-16*** 0.0001*** 0.002**
mou_avg 0.804 0.076Δ 0.883 0.671 0.891
mou_std 0.973 0.266 0.974 0.429 0.581
overcall_fee_avg 0.937 0.155 0.084Δ 0.883 0.021*
overcall_fee_std 0.425 0.103 0.264 0.449 0.089Δ
overcall_flag 0.234 0.195 0.905 0.001** 2.19e-06***

Fig.1

Scatter plot of similarity"

Table 4

Calculation of R"

用户编号 产品编号 最后一次购买时间tui 设定最后日期 R
1 1 t11 2020-12-31 T-t11
1 2 t12 2020-12-31 T-t12
m n-1 tm(n-1) 2020-12-31 T-tm(n-1)
m n tmn 2020-12-31 T-tmn

Table 5

Calculation of F"

用户编号 产品编号 订购次数cui 产品总使用时长tui 产品缴费周期Ti F
1 1 c11 t11 T1 $\frac{t_{11}}{T_1}$
1 2 c12 t12 T2 $\frac{t_{12}}{T_2}$
1 3 c13 - - c13
m n-1 cm(n-1) tm(n-1) Tn-1 $\left[\frac{t_{m(n-1)}}{T_{n-1}}\right]$
m n cmn tmn Tn $\left[\frac{t_{m n}}{T_{n}}\right]$

Table 6

Calculation of M"

用户编号 产品编号 该产品订购总金额aui 所有产品订购总金额Au M
1 1 a11 A1 $\frac{a_{11}}{A_{1}}$
1 2 a12 A1 $\frac{a_{12}}{A_{1}}$
m n-1 am(n-1) Am $\frac{a_{m(n-1)}}{A_{m}}$
m n amn Am $\frac{a_{m n}}{A_{m}}$

Table 7

Weights of R, F and M"

指标 R F M
信息熵值 0.759 0.807 0.804
信息熵冗余度 0.241 0.193 0.196
权重 0.383 0.306 0.310

Table 8

Calculation of user-product rating matrix"

用户编号 产品编号 R F M 得分
1 1 R11 F11 M11 RweightR11+FweightF11+MweightM11
1 2 R12 F12 M12 RweightR12+FweightF12+MweightM12
m n-1 Rm(n-1) Fm(n-1) Mm(n-1) RweightRm(n-1)+FweightFm(n-1)+MweightMm(n-1)
m n Rmn Fmn Mmn RweightRmn+FweightFmn+MweightMmn

Table 9

Partial data of user-product rating matrix"

用户编号 产品类型
点播年包 美食生活礼包 快消包 模组升档
1 0 0 2.827 0
2 0 0 5.354 0
3 0 0 0 4.532
4 0 0 1.920 2.975
5 0 0 6.105 0
6 3.138 0 0 0
7 2.058 0 2.232 0
8 0 0 2.721 0
9 0 3.279 5.668 0
10 0 3.465 0 2.789

Table 10

Prediction results of rating"

K 传统的矩阵分解模型 改进的矩阵分解模型
RMSE MAE RMSE MAE
2 0.350 0.255 0.182 0.141
4 0.252 0.199 0.144 0.121
6 0.196 0.166 0.124 0.114
8 0.152 0.136 0.116 0.111
10 0.147 0.135 0.113 0.111

Fig.2

Prediction results of rating"

Fig.3

Histogram of the number of product ordering users"

Table 11

Negative sampling results of users"

用户编号 产品正样本 ratio=1 ratio=2
1 {3, 5} {8, 2} {8, 2, 4, 10}
2 {2, 10} {5, 3} {5, 3, 8, 4}
3 {3, 8, 10} {5, 2, 4} {5, 2, 4, 14, 15, 9}
4 {3, 5} {8, 2} {8, 2, 4, 10}
5 {3, 8} {5, 2} {5, 2, 4, 10}
6 {4, 8, 10} {5, 3} {5, 3, 2, 14, 15, 9}
7 {5, 6, 8} {3, 2, 4} {3, 2, 4, 10, 14, 15}
8 {4, 5} {3, 8} {3, 8, 2, 10}
9 {3, 4} {5, 8} {5, 8, 2, 10}
10 {2, 5} {3, 8} {3, 8, 4, 10}

Table 12

Performance of Top-N recommendation"

模型类别 N ratio 精确率 召回率 F1 覆盖率 流行度
经典的矩阵分解模型 1 1 0.031 0.043 0.036 0.400 5.167
2 0.049 0.031 0.038 0.267 5.602
3 0.098 0.083 0.090 0.133 5.945
2 1 0.057 0.069 0.062 0.467 5.091
2 0.115 0.123 0.119 0.267 5.761
3 0.206 0.216 0.211 0.133 6.447
改进的矩阵分解模型 1 1 0.048 0.068 0.056 0.333 5.236
2 0.060 0.045 0.051 0.200 5.639
3 0.127 0.131 0.129 0.133 6.223
2 1 0.070 0.082 0.076 0.333 5.316
2 0.144 0.117 0.129 0.267 6.178
3 0.238 0.221 0.229 0.200 6.429

Table 13

Examples of recommendation"

用户A 用户B
推荐商品编号 兴趣度 推荐商品编号 兴趣度
6 0.817 3 0.789
3 0.804 5 0.769
1 姚凯, 涂平, 陈宇新, 等. 基于多源大数据的个性化推荐系统效果研究[J]. 管理科学, 2018, 31 (5): 3- 15.
YAO Kai , TU Ping , CHEN Yuxin , et al. Research on the effectiveness of personalized recommender system based on multi-source big data[J]. Journal of Management Science, 2018, 31 (5): 3- 15.
2 朱志国, 周雨禾, 王谢宁. 移动商务中融合签到位置与用户间相似性的兴趣点精准推荐[J]. 系统工程理论与实践, 2020, 40 (2): 462- 469.
ZHU Zhiguo , ZHOU Yuhe , WANG Xiening . Recommendation of POI by integrating user similarity and location information in mobile commerce[J]. Systems Engineering-Theory & Practice, 2020, 40 (2): 462- 469.
3 仲秋雁, 李晨, 崔少泽. 考虑工人参与意愿影响因素的竞争式众包任务推荐方法[J]. 系统工程理论与实践, 2018, 38 (11): 2954- 2965.
ZHONG Qiuyan , LI Chen , CUI Shaoze . Task recommendation method based on the influencing factors of crowdsourcing contest participating willingness[J]. Systems Engineering-Theory & Practice, 2018, 38 (11): 2954- 2965.
4 何婧, 胡杰. 融合矩阵分解和XGBoost的个性化推荐算法[J]. 重庆大学学报, 2021, 44 (1): 78- 87.
HE Jing , HU Jie . Personalized recommendation system based on matrix factorization and XGBoost algorithm[J]. Journal of Chongqing University, 2021, 44 (1): 78- 87.
5 贾俊杰, 刘鹏涛, 陈旺虎. 融合社交信息的矩阵分解改进推荐算法[J]. 计算机工程, 2021, 47 (9): 97- 105.
JIA Junjie , LIU Pengtao , CHEN Wanghu . Matrix factorization improved recommendation algorithm based on social information[J]. Computer Engineering, 2021, 47 (9): 97- 105.
6 陈树龙. 基于矩阵分解的推荐算法研究[D]. 湖南: 国防科技大学, 2018.
CHEN Shulong. Research on recommendation algorithm based on matrix factorization[D]. Hunan: National University of Defense Technology, 2018.
7 MA H, ZHOU D Y, LIU C, et al. Recommender systems with social regularization[C]//Proceedings of the fourth ACM international conference on Web search and data mining (WSDM'11), New York: Association for Computing Machinery, 2011: 287-296.
8 王扬, 吴凡, 姚宗强, 等. 基于正则化矩阵分解的用户用电行为分析[J]. 计算机应用, 2017, 37 (8): 2405- 2409.
WANG Yang , WU Fan , YAO Zongqaing , et al. Residential electricity consumption analysis based on regularized matrix factorization[J]. Journal of Computer Applications, 2017, 37 (8): 2405- 2409.
9 林婉莹. 图书推荐系统中提升Top-N列表多样性算法研究[D]. 北京: 北京邮电大学, 2019.
LIN Wanying. Research on improving Top-N list diversity algorithm in book recommendation system[D]. Beijing: Beijing University of Posts and Telecommunications, 2019.
10 胡炳文. 基于项目相似度改进的协同过滤TopN推荐算法研究[D]. 安徽: 安徽理工大学, 2016.
HU Bingwen. Collaborative filtering TopN-recommendation algorithm based on the improved similarity research[D]. Anhui: Anhui University of Science and Technology, 2016.
11 赵向宇. Top-N协同过滤推荐技术研究[D]. 北京: 北京理工大学, 2014.
ZHAO Xiangyu. Research on Top-Nrecommendation with collaborative filtering[D]. Beijing: Beijing Institute of Technology, 2014.
12 史达, 于淼川, 李梦琪. 基于用户隐式数据的个性化酒店推荐算法[J]. 山东大学学报(理学版), 2021, 56 (7): 1- 10.
SHI Da , YU Miaochuan , LI Mengqi . Personalized hotel recommendation algorithm based on user implicit data[J]. Journal of Shandong University (Natural Science), 2021, 56 (7): 1- 10.
13 彭滢, 吴子君. 基于客户消费行为的4G资费套餐推荐建模研究[J]. 移动通信, 2017, 41 (8): 85- 90.
PENG Ying , WU Zijun . Investigation on 4G tariff plan recommendation model based on customer consumption behaviors[J]. Mobile Communications, 2017, 41 (8): 85- 90.
14 张铁军, 雒兴刚, 蔡莉青, 等. 基于顾客选择行为的移动资费套餐优化模型[J]. 系统工程理论与实践, 2014, 34 (2): 444- 450.
ZHANG Tiejun , LUO Xinggang , CAI Liqing , et al. Optimization model for mobile billing suite based on customer choice anaylsis[J]. Systems Engineering-Theory & Practice, 2014, 34 (2): 444- 450.
15 王学民. 应用多元统计分析[M]. 上海: 上海财经大学出版社, 2017.
WANG Xuemin . Applied multivariate statistical analysis[M]. Shanghai: Shanghai University of Finance and Economics Press, 2017.
16 吴宾, 娄铮铮, 叶阳东. 联合正则化的矩阵分解推荐算法[J]. 软件学报, 2018, 29 (9): 2681- 2696.
WU Bin , LOU Zhengzheng , YE Yangdong . Co-regularized matrix factorization recommendation algorithm[J]. Journal of Software, 2018, 29 (9): 2681- 2696.
17 薛永基, 熊海涛, 翟祥, 等. 客户关系管理—理论、技术与实践[M]. 北京: 人民邮电出版社, 2013.
XUE Yongji , XIONG Haitao , ZHAI Xiang , et al. Customer Relationship Management: Theory, Technology and Practice[M]. Beijing: Posts & Telecom Press, 2013.
18 赵萌, 齐佳音. 基于购买行为RFM及评论行为RFMP模型的客户终身价值研究[J]. 统计与信息论坛, 2014, 29 (9): 91- 98.
ZHAO Meng , QI Jiayin . The research of customer lifetime value based on the combination of customer purchase's RFM and customer online review's RFMP[J]. Statistics & Information Forum, 2014, 29 (9): 91- 98.
19 BOOKER Q E . Automating "word of mouth" to recommend classes to students: an application of social information filtering algorithms[J]. Journal of College Teaching & Learning, 2009, 6 (3): 39- 44.
20 BALABANOVIC M , SHOHAM Y . Fab: content-based, collaborative recommendation[J]. Communications of the ACM, 1997, 40 (3): 66- 72.
21 KOENIGSTEIN N, DROR G, KOREN Y. Yahoo! music recommendations: modeling music ratings with temporal dynamics and item taxonomy[C]//Proceedings of the Fifth ACM Conference on Recommender Systems (RecSys'11), New York: Association for Computing Machinery, 2011: 165-172.
22 项亮. 推荐系统实践[M]. 北京: 人民邮电出版社, 2012.
XIANG Liang . Practice of recommender systems[M]. Beijing: Posts & Telecom Press, 2012.
[1] Yujia NA,Jun XIE,Haiyang YANG,Xinying XU. Context fusion-based knowledge graph completion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(9): 71-80.
[2] Cheng LI,Wengang CHE,Shengxiang GAO. A object detection algorithm for aerial images [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(9): 59-70.
[3] San-li YI,Jian-ting CHEN,Jian-feng HE. ASR-UNet: an improved retinal vessels segmentation algorithm based on attention mechanism [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(9): 13-20.
[4] Jing-hong WANG,Li-na LIANG,Hao-kang LI,Yi ZHOU. Community discovery algorithm based on attention network feature [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(9): 1-12,20.
[5] WANG Wei-yu, SHI Cun-hui, YU Xiao-ming, LIU Yue, CHENG Xue-qi. An extractive topic brief representation generation method to event [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(5): 66-75.
[6] Yi-ming ZHANG,Guo-yin WANG,Jun HU,Shun FU. Overlapping community detection based on density peaks and network embedding [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(1): 91-102.
[7] Kan XU,Rui-xin LIU,Hong-fei LIN,Hai-feng LIU,Jiao-jiao FENG,Jia-ping LI,Yuan LIN,Bo XU. Academic paper recommendation based on heterogeneous network embedding [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(11): 35-45.
[8] ZHANG Ling, REN Xue-fang. Intelligent data classification and intelligent retrieval-recognition of class [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 7-14.
[9] Ming-xing LIN. Low-light image enhancement algorithm based on variational structure [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(9): 72-80.
[10] Jia-qi WANG,Mu-yun YANG,Tie-jun ZHAO,Zhen-yu ZHAO. Construction of retrieval dataset of procuratorate legal documents [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(7): 81-87.
[11] Ying YU,Xin-nian WU,Le-wei WANG,Ying-long ZHANG. A multi-label three-way classification algorithm based on label correlation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(3): 81-88.
[12] Liu-ying WEN,Wei YUAN. Clustering method for multi-label symbolic value partition [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(3): 58-69.
[13] Min-qing ZHANG,Neng ZHOU,Meng-meng LIU,Han WANG,Yan KE. Reversible data hiding in homomorphic encrypted domain based on Paillier [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(3): 1-8,18.
[14] Xin-le WANG,Wen-feng YANG,Hua-ming LIAO,Yong-qing WANG,Yue LIU,Xiao-ming YU,Xue-qi CHENG. Topic tag popularity prediction based on multi-dimensional features [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(1): 94-101.
[15] Ni LI,Huan-mei GUAN,Piao YANG,Wen-yong DONG. BERT-IDCNN-CRF for named entity recognition in Chinese [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(1): 102-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TANG Feng-qin1, BAI Jian-ming2. The precise large deviations for a risk model with extended negatively upper orthant dependent claim  sizes[J]. J4, 2013, 48(1): 100 -106 .
[2] CHENG Zhi1,2, SUN Cui-fang2, WANG Ning1, DU Xian-neng1. On the fibre product of Zn and its property[J]. J4, 2013, 48(2): 15 -19 .
[3] TANG Xiao-hong1, HU Wen-xiao2*, WEI Yan-feng2, JIANG Xi-long2, ZHANG Jing-ying2, SHAO Xue-dong3. Screening and biological characteristics studies of wide wine-making yeasts[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 12 -17 .
[4] MAO Ai-qin1,2, YANG Ming-jun2, 3, YU Hai-yun2, ZHANG Pin1, PAN Ren-ming1*. Study on thermal decomposition mechanism of  pentafluoroethane fire extinguishing agent[J]. J4, 2013, 48(1): 51 -55 .
[5] LI Yong-ming1, DING Li-wang2. The r-th moment consistency of estimators for a semi-parametric regression model for positively associated errors[J]. J4, 2013, 48(1): 83 -88 .
[6] DONG Li-hong1,2, GUO Shuang-jian1. The fundamental theorem for weak Hopf module in  Yetter-Drinfeld module categories[J]. J4, 2013, 48(2): 20 -22 .
[7] ZHAO Jun1, ZHAO Jing2, FAN Ting-jun1*, YUAN Wen-peng1,3, ZHANG Zheng1, CONG Ri-shan1. Purification and anti-tumor activity examination of water-soluble asterosaponin from Asterias rollestoni Bell[J]. J4, 2013, 48(1): 30 -35 .
[8] YANG Yong-wei1, 2, HE Peng-fei2, LI Yi-jun2,3. On strict filters of BL-algebras#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 63 -67 .
[9] LI Min1,2, LI Qi-qiang1. Observer-based sliding mode control of uncertain singular time-delay systems#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 37 -42 .
[10] Ming-Chit Liu. THE TWO GOLDBACH CONJECTURES[J]. J4, 2013, 48(2): 1 -14 .