山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (6): 44-52.doi: 10.6040/j.issn.1671-9352.0.2017.507
周呈花, 巩万中*, 张道祥
摘要: 给出了Banach空间中O-凸性的一些特征,由此得到了赋Luxemburg范数下Orlicz-Bochner序列空间及函数空间具有O-凸性的充要条件。
中图分类号:
[1] MAZCUNAN-NAVARRO E. Geometria de los Espacios de Banach en Teoria Metrica del Punto Fijo[D]. Doctoral Dissertation University of Valencia, 2003. [2] KOTTMAN C. Packing and reflexivity in Banach spaces[J]. Transactions of the American Mathematical Society, 1970, 150(2):565-576. [3] SAEJUNG S. Convexity conditions and normal structure of Banach spaces[J]. Journal of Mathematical Analysis and Applications, 2008, 344(2):851-856. [4] NAIDU S, SASTRY K. Convexity condition in normed liner spaces[J]. Journal fur die Reine und Angewandte Mathematik, 1978, 1978(297):35-53. [5] FETTER NATHANSKY H, LIORENS-FUSTER E. Comparison of P-convexity, O-convexity and other geometrical properties[J]. Journal of Mathematical Analysis and Applications, 2012, 396(2):749-758. [6] KOLWICZ P. A note on P-convex Orlicz function spaces[J]. Commentationes Mathematicae Prace Matematyczne, 1995, 35(2):163-170. [7] KOLWICZ P. P-convexity of Musielak-Orlicz sequence spaces of Bochner type[J]. Collectanea Mathematica, 1997, 48(4):587-600. [8] KOLWICZ P, PLUCIENNIK R. On P-convex Musielak-Orlicz spaces[J]. Commentationes Mathematicae Universitatis Carolinae, 1995, 36(4):655-672. [9] KOLWICZ P, PLUCIENNIK R. P-convexity of Orlicz-Bochner spaces[J]. Proceedings of the American Mathematical Society, 1998, 126(8):2315-2322. [10] SHANG Shaoqiang, CUI Yunan, FU Yongqiang. P-convexity of Orlicz-Bochner function spaces endowed with the Orlicz norm[J]. Nonlinear Analysis, 2012, 75(1):371-379. [11] YE Yining, HE Miaohong, PLUCIENNK R. P-convexity and reflexivity of Orlicz spaces[J]. Commentationes Mathematicae. Prace Matematyczne, 1991, 31(2):203-216. [12] YE Yining, HUANG Yafeng. P-convexity property in Musielak-Orlicz sequence spaces[J]. Collectanea Mathematica, 1993, 44(1-3):307-326. [13] CHEN Shutao. Geometry of Orlicz spaces[M]. Warszawa: Dissertationes Mathematicae Warszawa, 1996. [14] SHANG Shaoqiang, CUI Yunan. Approximative compactness and Asplund property in Banach function spaces and in Orlicz-Bochner spaces in particular with application[J]. Journal of Mathematical Analysis and Applications, 2015, 421(2):1377-1395. [15] GIESY D. On a convexity condition in normed liner spaces[J]. Transactions of the American Mathematical Society, 1966, 125(1):114-146. [16] JAMES R. Uniformly non-square Banach spaces[J]. Annals of Mathematics, 1964, 80(3):542-550. [17] JAMES R. A nonreflexive Banach space that is uniformly nonoctathedral[J]. Israel Journal of Mathematics, 1974, 18(2):145-155. [18] MILMAN D. On some criteria for the regularity of spaces of type(B)[J]. Doklady Akademii Nauk SSSR, 1938, 20(2):243-246. [19] WANG Tingfu, SHI Zhongrui. On the uniformly normal structure of orlicz spaces with Orlicz norm[J]. Commentationes Mathematicae Universitatis Carolinae, 1993, 34(3):433-442. |
[1] | 张莹,曹小红,戴磊. 有界线性算子的Weyl定理的判定[J]. 山东大学学报(理学版), 2018, 53(10): 82-87. |
[2] | 黄雷雷,宋晓秋,卢威. Banach空间上离散时间系统的多项式稳定[J]. 山东大学学报(理学版), 2017, 52(10): 36-41. |
[3] | 孔莹莹,曹小红,戴磊. a-Weyl定理的判定及其摄动[J]. 山东大学学报(理学版), 2017, 52(10): 77-83. |
[4] | 宋佳佳,曹小红,戴磊. 上三角算子矩阵SVEP微小紧摄动的判定[J]. 山东大学学报(理学版), 2017, 52(4): 61-67. |
[5] | 刘晓伟. 二维赋范空间单位球面间的等距映射的线性延拓[J]. 山东大学学报(理学版), 2017, 52(2): 44-48. |
[6] | 戴磊,曹小红. (z)性质与Weyl型定理[J]. 山东大学学报(理学版), 2017, 52(2): 60-65. |
[7] | 董炯,曹小红. 算子立方的Weyl定理及其紧摄动[J]. 山东大学学报(理学版), 2016, 51(8): 15-21. |
[8] | 吴学俪, 曹小红, 张敏. 有界线性算子的单值扩张性质的摄动[J]. 山东大学学报(理学版), 2015, 50(12): 5-9. |
[9] | 马飞, 张建华, 贺雯. CDC-代数上的广义Jordan中心化子[J]. 山东大学学报(理学版), 2015, 50(06): 83-88. |
[10] | 崔苗苗, 王碧玉, 曹小红. 算子矩阵的一个注记[J]. 山东大学学报(理学版), 2014, 49(10): 56-61. |
[11] | 刘洋. 算子的超循环性的一些等价条件[J]. J4, 2013, 48(12): 75-79. |
[12] | 李志刚,宋晓秋*,岳田. 巴拿赫空间上发展算子的非一致多项式三分性[J]. J4, 2013, 48(12): 80-85. |
[13] | 陈世昭,曹小红*. 算子代数上保持升降标的线性映射[J]. J4, 2013, 48(12): 86-89. |
[14] | 谢仲洲 刘晓冀. 两组四元数线性矩阵方程组的解[J]. J4, 2008, 43(12): 40-47. |
[15] | 曹小红 . Banach空间上的单值延拓性质[J]. J4, 2006, 41(1): 92-96 . |
|