您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (6): 44-52.doi: 10.6040/j.issn.1671-9352.0.2017.507

• • 上一篇    下一篇

赋Luxemburg范数下Orlicz-Bochner 空间的O-凸性

周呈花, 巩万中*, 张道祥   

  1. 安徽师范大学数学计算机科学学院, 安徽 芜湖 241000
  • 收稿日期:2017-09-27 出版日期:2018-06-20 发布日期:2018-06-13
  • 作者简介:周呈花(1990—), 女, 硕士研究生, 研究方向为Banach空间. E-mail:1521612638@qq.com*通信作者简介:巩万中(1978— ), 男, 博士, 副教授, 研究方向为泛函分析. E-mail:gongwanzhong@shu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11771273,11302002)

O-convexity of Orlicz-Bochner spaces with the Luxemburg norm

  1. College of Mathematics and Computer Science, Anhui Normal University, Wuhu 241000, Anhui, China
  • Received:2017-09-27 Online:2018-06-20 Published:2018-06-13

摘要: 给出了Banach空间中O-凸性的一些特征,由此得到了赋Luxemburg范数下Orlicz-Bochner序列空间及函数空间具有O-凸性的充要条件。

关键词: Orlicz-Bochner序列空间, Luxemburg范数, O-凸性, Orlicz-Bochner函数空间

Abstract: Some characterizations of O-convexity in Banach space are given. Using these characterizations, the criteria is obtained for O-convex of Orlicz-Bochner spaces endowed with the Luxemburg norm.

Key words: Orlicz-Bochner function space, Orlicz-Bochner sequence space, Luxemburg norm, O-convexity

中图分类号: 

  • O177.2
[1] MAZCUNAN-NAVARRO E. Geometria de los Espacios de Banach en Teoria Metrica del Punto Fijo[D]. Doctoral Dissertation University of Valencia, 2003.
[2] KOTTMAN C. Packing and reflexivity in Banach spaces[J]. Transactions of the American Mathematical Society, 1970, 150(2):565-576.
[3] SAEJUNG S. Convexity conditions and normal structure of Banach spaces[J]. Journal of Mathematical Analysis and Applications, 2008, 344(2):851-856.
[4] NAIDU S, SASTRY K. Convexity condition in normed liner spaces[J]. Journal fur die Reine und Angewandte Mathematik, 1978, 1978(297):35-53.
[5] FETTER NATHANSKY H, LIORENS-FUSTER E. Comparison of P-convexity, O-convexity and other geometrical properties[J]. Journal of Mathematical Analysis and Applications, 2012, 396(2):749-758.
[6] KOLWICZ P. A note on P-convex Orlicz function spaces[J]. Commentationes Mathematicae Prace Matematyczne, 1995, 35(2):163-170.
[7] KOLWICZ P. P-convexity of Musielak-Orlicz sequence spaces of Bochner type[J]. Collectanea Mathematica, 1997, 48(4):587-600.
[8] KOLWICZ P, PLUCIENNIK R. On P-convex Musielak-Orlicz spaces[J]. Commentationes Mathematicae Universitatis Carolinae, 1995, 36(4):655-672.
[9] KOLWICZ P, PLUCIENNIK R. P-convexity of Orlicz-Bochner spaces[J]. Proceedings of the American Mathematical Society, 1998, 126(8):2315-2322.
[10] SHANG Shaoqiang, CUI Yunan, FU Yongqiang. P-convexity of Orlicz-Bochner function spaces endowed with the Orlicz norm[J]. Nonlinear Analysis, 2012, 75(1):371-379.
[11] YE Yining, HE Miaohong, PLUCIENNK R. P-convexity and reflexivity of Orlicz spaces[J]. Commentationes Mathematicae. Prace Matematyczne, 1991, 31(2):203-216.
[12] YE Yining, HUANG Yafeng. P-convexity property in Musielak-Orlicz sequence spaces[J]. Collectanea Mathematica, 1993, 44(1-3):307-326.
[13] CHEN Shutao. Geometry of Orlicz spaces[M]. Warszawa: Dissertationes Mathematicae Warszawa, 1996.
[14] SHANG Shaoqiang, CUI Yunan. Approximative compactness and Asplund property in Banach function spaces and in Orlicz-Bochner spaces in particular with application[J]. Journal of Mathematical Analysis and Applications, 2015, 421(2):1377-1395.
[15] GIESY D. On a convexity condition in normed liner spaces[J]. Transactions of the American Mathematical Society, 1966, 125(1):114-146.
[16] JAMES R. Uniformly non-square Banach spaces[J]. Annals of Mathematics, 1964, 80(3):542-550.
[17] JAMES R. A nonreflexive Banach space that is uniformly nonoctathedral[J]. Israel Journal of Mathematics, 1974, 18(2):145-155.
[18] MILMAN D. On some criteria for the regularity of spaces of type(B)[J]. Doklady Akademii Nauk SSSR, 1938, 20(2):243-246.
[19] WANG Tingfu, SHI Zhongrui. On the uniformly normal structure of orlicz spaces with Orlicz norm[J]. Commentationes Mathematicae Universitatis Carolinae, 1993, 34(3):433-442.
[1] 张莹,曹小红,戴磊. 有界线性算子的Weyl定理的判定[J]. 山东大学学报(理学版), 2018, 53(10): 82-87.
[2] 黄雷雷,宋晓秋,卢威. Banach空间上离散时间系统的多项式稳定[J]. 山东大学学报(理学版), 2017, 52(10): 36-41.
[3] 孔莹莹,曹小红,戴磊. a-Weyl定理的判定及其摄动[J]. 山东大学学报(理学版), 2017, 52(10): 77-83.
[4] 宋佳佳,曹小红,戴磊. 上三角算子矩阵SVEP微小紧摄动的判定[J]. 山东大学学报(理学版), 2017, 52(4): 61-67.
[5] 刘晓伟. 二维赋范空间单位球面间的等距映射的线性延拓[J]. 山东大学学报(理学版), 2017, 52(2): 44-48.
[6] 戴磊,曹小红. (z)性质与Weyl型定理[J]. 山东大学学报(理学版), 2017, 52(2): 60-65.
[7] 董炯,曹小红. 算子立方的Weyl定理及其紧摄动[J]. 山东大学学报(理学版), 2016, 51(8): 15-21.
[8] 吴学俪, 曹小红, 张敏. 有界线性算子的单值扩张性质的摄动[J]. 山东大学学报(理学版), 2015, 50(12): 5-9.
[9] 马飞, 张建华, 贺雯. CDC-代数上的广义Jordan中心化子[J]. 山东大学学报(理学版), 2015, 50(06): 83-88.
[10] 崔苗苗, 王碧玉, 曹小红. 算子矩阵的一个注记[J]. 山东大学学报(理学版), 2014, 49(10): 56-61.
[11] 刘洋. 算子的超循环性的一些等价条件[J]. J4, 2013, 48(12): 75-79.
[12] 李志刚,宋晓秋*,岳田. 巴拿赫空间上发展算子的非一致多项式三分性[J]. J4, 2013, 48(12): 80-85.
[13] 陈世昭,曹小红*. 算子代数上保持升降标的线性映射[J]. J4, 2013, 48(12): 86-89.
[14] 谢仲洲 刘晓冀. 两组四元数线性矩阵方程组的解[J]. J4, 2008, 43(12): 40-47.
[15] 曹小红 . Banach空间上的单值延拓性质[J]. J4, 2006, 41(1): 92-96 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!