《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (4): 37-44.doi: 10.6040/j.issn.1671-9352.0.2018.110
王琪,李连忠*
WANG Qi, LI Lian-zhong*
摘要: 运用Painlevé分析与李对称分析得到该时变系数Gardner方程的可积条件及其在不同条件下的对称,并给出对应的动力学向量场,进而分别基于Painlevé分析和对称约化的思想,将时变系数Gardner方程转化为常系数方程,并结合幂级数法求解约化方程的精确解,得到时变系数Gardner方程的若干精确解。
中图分类号:
[1] GARDNER C, GREENE J, KRUSKAL M, et al. Method for solving the Korteweg-de Vries equation[J]. Physical Review Letters, 1967, 19:1095-1097. [2] ABLOWITZ M, SEGUR H. Soliton and the inverse scattering transform[M]. Philadelphia: SIAM, 1981. [3] MATVEEV V, SALLE M. Darboux transformations and solitons[M]. Berlin: Springer, 1991. [4] HIROTA R, SATSUMA J. Avariety of nonlinear network equations generated from the Bäcklund transformation for the Toda lattice[J]. Progress of Theoretical Physics Supplement, 1976, 59:64-100. [5] OLVER P. Applications of Lie groups to differential equations[M]. New York: Springer, 1993. [6] PUCCI E, SACCOMANDI G. Potential symmetries and solutions by reduction of partial differential equations[J]. Journal of Physics A General Physics, 1993, 26(3):681-690. [7] QU Changzheng, HUANG Qing. Symmetry reductions and exact solutions of the affine heat equation[J]. Journal of Mathematical Analysis and Applications, 2008, 346(2):521-530. [8] 李玉, 刘希强. 扩展的KP-Benjamin-Bona-Mahoney方程的对称、约化和精确解[J]. 山东大学学报(理学版), 2017, 52(2):77-84. LI Yu, LIU Xiqiang. Symmetry, reduction and exact solutions of the extended KP-Benjamin-Bona-Mahoney equation[J]. Journal of Shandong University(Natural Science), 2017, 52(2):77-84. [9] ClARKSON P, KRUSKAL M. New similarity reductions of the Boussinesq equation[J]. Journal of Mathematical Physics, 1989, 30(10):2201-2213. [10] LI Jibin, LIU Zhengrong. Smooth and non-smooth traveling waves in a nonlinearly dispersive equation[J]. Applied Mathematical Modelling, 2000, 25(1):41-56. [11] LIU Hanze, LI Jibin. Symmetry reductions, dynamical behavior and exact explicit solutions to the Gordon types of equations[J]. Journal of Computational and Applied Mathematics, 2014, 257:144-156. [12] WEISS J, TABOR M, CARNEVALE G. The Painlevé property for partial differential equations. II: Bäcklund transformation, Lax pairs, and the Schwarzian derivative[J]. Journal of Mathematical Physics, 1983, 24(3):1405-1413. [13] NEWELL A, TABOR M, ZENG Yanbo. A unified approach to Painleve expansions[J]. Physica D: Nonlinear Phenomena, 1987, 29(1):1-68. [14] CONTE R, MUSETTE M. The Painlevé handbook[M]. Dordrecht: Springer, 2008. [15] CLARKSON P. Painleve analysis and the complete integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation[J]. Ima Journal of Applied Mathematics, 1990, 44(1):27-53. [16] LI Juan, XU Tao, MENG Xianghua, et al. Lax pair, Bäcklund transformation and N-soliton-like solution for a variable-coefficient Gardner equation from nonlinear lattice plasma physics and ocean dynamics with symbolic computation[J]. Journal of Mathematical Analysis and Applications, 2007, 336(2):1443-1455. [17] ZHANG Yi, LI Jibin, LYU Yineng. The exact solution and integrable properties to the variable-coefficient modified Korteweg-de Vires equation[J]. Annals of Physics, 2008, 323(12):3059-3064. [18] LIU Hanze, LI Jibin, LIU Lei. Painlevé analysis, Lie symmetries, and exact solutions for the time-dependent coefficients Gardner equations[J]. Nonlinear Dynamics, 2010, 59(3):497-502. [19] LIU Hanze, LI Jibin. Painlevé analysis, complete Lie group classifications and exact solutions to the time-dependent coefficients Gardner types of equations[J]. Nonlinear Dynamics, 2015, 80(1):515-527. [20] LIU Hanze, YUE Chao. Lie symmetries, integrable properties and exact solutions to the variable-coefficient nonlinear evolution equations[J]. Nonlinear Dynamics, 2017, 89(3):1989-2000. [21] ASAMR N H. Partial differential equations with Fourier series and boundary value problem[M]. Beijing: China Machine Press, 2005. [22] RUDIN W. Principles of mathematical analysis[M]. Beijing: China Machine Press, 2004. |
[1] | 杨飞,刘希强. 变系数GKP方程的精确解[J]. 《山东大学学报(理学版)》, 2019, 54(2): 111-120. |
[2] | 李玉,刘希强. 扩展的KP-Benjamin-Bona-Mahoney方程的对称、约化和精确解[J]. 山东大学学报(理学版), 2017, 52(2): 77-84. |
[3] | 刘勇, 刘希强. (2+1)维Caudrey-Dodd-Gibbon方程相似、约化、精确解[J]. 山东大学学报(理学版), 2015, 50(04): 49-55. |
[4] | 郭鹏,张磊,王小云,孙小伟. 几个特殊类型非线性方程的显式精确解[J]. J4, 2012, 47(12): 115-120. |
[5] | 辛祥鹏,刘希强,张琳琳. (2+1)-维非线性发展方程的对称约化和精确解[J]. J4, 2010, 45(8): 71-75. |
[6] | 郭鹏,万桂新,王小云,孙小伟. 非线性圆杆波导波动方程的显式精确解[J]. J4, 2010, 45(11): 122-126. |
[7] | 郭霄怡 徐明瑜. 广义Oldroyd-B流体的非定常Couette流的精确解[J]. J4, 2009, 44(10): 60-63. |
[8] | 朱 宏,刘 雄 . 一类Wick型随机KdV-MKdV方程的白噪声泛函解[J]. J4, 2008, 43(5): 45-49 . |
[9] | 齐海涛,金辉 . 广义二阶流体平板不定常流动的解析解[J]. J4, 2006, 41(4): 61-64 . |
|