您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (4): 37-44.doi: 10.6040/j.issn.1671-9352.0.2018.110

• • 上一篇    下一篇

广义时变系数Gardner方程的Painlevé分析、李对称和精确解

王琪,李连忠*   

  1. 江南大学理学院, 江苏 无锡, 214122
  • 发布日期:2019-04-08
  • 作者简介:王琪(1994— ), 女, 硕士研究生, 研究方向为非线性偏微分方程及其精确解. E-mail:782512646@qq.com*通信作者简介:李连忠(1972— ), 男, 博士, 教授, 研究方向为非线性偏微分方程及其精确解. E-mail:llz3498@163.com
  • 基金资助:
    江苏省自然科学基金青年基金资助项目(BK20170171)

Painlevé analysis, Lie symmetry and exact solutions to the generalized time-dependent coefficients Gardner equation

WANG Qi, LI Lian-zhong*   

  1. School of Science, Jiangnan University, Wuxi 214122, Jiangsu, China
  • Published:2019-04-08

摘要: 运用Painlevé分析与李对称分析得到该时变系数Gardner方程的可积条件及其在不同条件下的对称,并给出对应的动力学向量场,进而分别基于Painlevé分析和对称约化的思想,将时变系数Gardner方程转化为常系数方程,并结合幂级数法求解约化方程的精确解,得到时变系数Gardner方程的若干精确解。

关键词: Painlevé分析, 李对称分析, 对称约化, 幂级数解, 精确解

Abstract: A generalized Gardner equation with time-dependent coefficients is investigated in this paper, which arise in fluid dynamics, nonlinear lattice and plasma physics. By applying the combination of Painlevé analysis and Lie symmetry analysis method, the integrable conditions, symmetries and corresponding geometric vector fields of the time-dependent coefficient Gardner equation are investigated. Moreover, based on Painlevé analysis and the idea of symmetry reduction, the partial differential equations are reduced to ordinary differential equations. Combined with power series method, exact solutions to the reduced equations and a series of exact solutions to the original equations are obtained.

Key words: Painlevé analysis, Lie symmetry analysis, symmetry reduction, power series solution, exact solution

中图分类号: 

  • O175.2
[1] GARDNER C, GREENE J, KRUSKAL M, et al. Method for solving the Korteweg-de Vries equation[J]. Physical Review Letters, 1967, 19:1095-1097.
[2] ABLOWITZ M, SEGUR H. Soliton and the inverse scattering transform[M]. Philadelphia: SIAM, 1981.
[3] MATVEEV V, SALLE M. Darboux transformations and solitons[M]. Berlin: Springer, 1991.
[4] HIROTA R, SATSUMA J. Avariety of nonlinear network equations generated from the Bäcklund transformation for the Toda lattice[J]. Progress of Theoretical Physics Supplement, 1976, 59:64-100.
[5] OLVER P. Applications of Lie groups to differential equations[M]. New York: Springer, 1993.
[6] PUCCI E, SACCOMANDI G. Potential symmetries and solutions by reduction of partial differential equations[J]. Journal of Physics A General Physics, 1993, 26(3):681-690.
[7] QU Changzheng, HUANG Qing. Symmetry reductions and exact solutions of the affine heat equation[J]. Journal of Mathematical Analysis and Applications, 2008, 346(2):521-530.
[8] 李玉, 刘希强. 扩展的KP-Benjamin-Bona-Mahoney方程的对称、约化和精确解[J]. 山东大学学报(理学版), 2017, 52(2):77-84. LI Yu, LIU Xiqiang. Symmetry, reduction and exact solutions of the extended KP-Benjamin-Bona-Mahoney equation[J]. Journal of Shandong University(Natural Science), 2017, 52(2):77-84.
[9] ClARKSON P, KRUSKAL M. New similarity reductions of the Boussinesq equation[J]. Journal of Mathematical Physics, 1989, 30(10):2201-2213.
[10] LI Jibin, LIU Zhengrong. Smooth and non-smooth traveling waves in a nonlinearly dispersive equation[J]. Applied Mathematical Modelling, 2000, 25(1):41-56.
[11] LIU Hanze, LI Jibin. Symmetry reductions, dynamical behavior and exact explicit solutions to the Gordon types of equations[J]. Journal of Computational and Applied Mathematics, 2014, 257:144-156.
[12] WEISS J, TABOR M, CARNEVALE G. The Painlevé property for partial differential equations. II: Bäcklund transformation, Lax pairs, and the Schwarzian derivative[J]. Journal of Mathematical Physics, 1983, 24(3):1405-1413.
[13] NEWELL A, TABOR M, ZENG Yanbo. A unified approach to Painleve expansions[J]. Physica D: Nonlinear Phenomena, 1987, 29(1):1-68.
[14] CONTE R, MUSETTE M. The Painlevé handbook[M]. Dordrecht: Springer, 2008.
[15] CLARKSON P. Painleve analysis and the complete integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation[J]. Ima Journal of Applied Mathematics, 1990, 44(1):27-53.
[16] LI Juan, XU Tao, MENG Xianghua, et al. Lax pair, Bäcklund transformation and N-soliton-like solution for a variable-coefficient Gardner equation from nonlinear lattice plasma physics and ocean dynamics with symbolic computation[J]. Journal of Mathematical Analysis and Applications, 2007, 336(2):1443-1455.
[17] ZHANG Yi, LI Jibin, LYU Yineng. The exact solution and integrable properties to the variable-coefficient modified Korteweg-de Vires equation[J]. Annals of Physics, 2008, 323(12):3059-3064.
[18] LIU Hanze, LI Jibin, LIU Lei. Painlevé analysis, Lie symmetries, and exact solutions for the time-dependent coefficients Gardner equations[J]. Nonlinear Dynamics, 2010, 59(3):497-502.
[19] LIU Hanze, LI Jibin. Painlevé analysis, complete Lie group classifications and exact solutions to the time-dependent coefficients Gardner types of equations[J]. Nonlinear Dynamics, 2015, 80(1):515-527.
[20] LIU Hanze, YUE Chao. Lie symmetries, integrable properties and exact solutions to the variable-coefficient nonlinear evolution equations[J]. Nonlinear Dynamics, 2017, 89(3):1989-2000.
[21] ASAMR N H. Partial differential equations with Fourier series and boundary value problem[M]. Beijing: China Machine Press, 2005.
[22] RUDIN W. Principles of mathematical analysis[M]. Beijing: China Machine Press, 2004.
[1] 杨飞,刘希强. 变系数GKP方程的精确解[J]. 《山东大学学报(理学版)》, 2019, 54(2): 111-120.
[2] 李玉,刘希强. 扩展的KP-Benjamin-Bona-Mahoney方程的对称、约化和精确解[J]. 山东大学学报(理学版), 2017, 52(2): 77-84.
[3] 刘勇, 刘希强. (2+1)维Caudrey-Dodd-Gibbon方程相似、约化、精确解[J]. 山东大学学报(理学版), 2015, 50(04): 49-55.
[4] 郭鹏,张磊,王小云,孙小伟. 几个特殊类型非线性方程的显式精确解[J]. J4, 2012, 47(12): 115-120.
[5] 辛祥鹏,刘希强,张琳琳. (2+1)-维非线性发展方程的对称约化和精确解[J]. J4, 2010, 45(8): 71-75.
[6] 郭鹏,万桂新,王小云,孙小伟. 非线性圆杆波导波动方程的显式精确解[J]. J4, 2010, 45(11): 122-126.
[7] 郭霄怡 徐明瑜. 广义Oldroyd-B流体的非定常Couette流的精确解[J]. J4, 2009, 44(10): 60-63.
[8] 朱 宏,刘 雄 . 一类Wick型随机KdV-MKdV方程的白噪声泛函解[J]. J4, 2008, 43(5): 45-49 .
[9] 齐海涛,金辉 . 广义二阶流体平板不定常流动的解析解[J]. J4, 2006, 41(4): 61-64 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 朱林. A4型箭图的可分单态射表示和RSS等价[J]. 山东大学学报(理学版), 2018, 53(2): 1 -8 .
[2] 刘园园,曹德欣,秦军. 非线性二层混合整数规划问题的区间算法[J]. 山东大学学报(理学版), 2018, 53(2): 9 -17 .
[3] 晏燕,郝晓弘. 差分隐私密度自适应网格划分发布方法[J]. 山东大学学报(理学版), 2018, 53(9): 12 -22 .
[4] 刘方圆,孟宪佳,汤战勇,房鼎益,龚晓庆. 基于smali代码混淆的Android应用保护方法Symbol`@@[J]. 山东大学学报(理学版), 2017, 52(3): 44 -50 .
[5] 廖祥文,张凌鹰,魏晶晶,桂林,程学旗,陈国龙. 融合时间特征的社交媒介用户影响力分析[J]. 山东大学学报(理学版), 2018, 53(3): 1 -12 .
[6] 顾沈明,陆瑾璐,吴伟志,庄宇斌. 广义多尺度决策系统的局部最优粒度选择[J]. 山东大学学报(理学版), 2018, 53(8): 1 -8 .
[7] 曹伟东,戴涛,于金彪,王晓宏,施安峰. 化学驱模型中压力方程的交替方向解法改进[J]. 山东大学学报(理学版), 2018, 53(10): 88 -94 .
[8] 李金海,吴伟志. 形式概念分析的粒计算方法及其研究展望[J]. 山东大学学报(理学版), 2017, 52(7): 1 -12 .
[9] 孙建东,顾秀森,李彦,徐蔚然. 基于COAE2016数据集的中文实体关系抽取算法研究[J]. 山东大学学报(理学版), 2017, 52(9): 7 -12 .
[10] 叶晓鸣,陈兴蜀,杨力,王文贤,朱毅,邵国林,梁刚. 基于图演化事件的主机群异常检测模型[J]. 山东大学学报(理学版), 2018, 53(9): 1 -11 .