《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (4): 29-36.doi: 10.6040/j.issn.1671-9352.0.2018.258
章欢,李永祥*
ZHANG Huan, LI Yong-xiang*
摘要: 研究了非线性项中含有时滞导数项的高阶常微分方程u(n)(t)+a(t)u(t)=f(t, u(t-τ0(t)), u'(t-τ1(t)),…, u(n-1)(t-τn-1(t))), t∈R正 ω-周期解的存在性, 其中 n≥2, a:R→(0,∞)连续以 ω 为周期, f:R×[0,∞)×Rn-1→[0,∞)连续, 关于t以ω为周期, τk:R→[0,∞)连续以ω为周期, k=0,1,…,n-1。运用正算子扰动方法和锥上的不动点指数理论, 获得了该方程正 ω-周期解的存在性结果。
中图分类号:
[1] LI Yongxiang. Positive periodic solutions of second-order differential equations with delays[J/OL]. Abstract and Applied Analysis, 2012, 2012.[2012-04-14]. http://dx.doi.org/10.1155/2012/829783. [2] 李永祥. 含时滞导数项的二阶中立型泛函微分方程的正周期解[J]. 数学学报(中文版), 2014, 57(3):505-516. LI Yongxiang. Positive periodic solutions of second-order neutral functional differential equations with delayed derivative terms[J]. Acta Mathematica Sinica(Chinese Series), 2014, 57(3):505-516. [3] JIN Zhilong, WANG Haiyan. A note on positive periodic solutions of delayed differential equations[J]. Applied Mathematics Letters, 2010, 23(5):581-584. [4] LI Qiang, LI Yongxiang. On the existence of positive periodic solutions for second-order functional differential equations with multiple delays[J/OL]. Abstract and Applied Analysis, 2012, 2012.[2012-11-01]. http://dx.doi.org/10.1155/2012/929870. [5] LI Yongxiang, LI Qiang. Positive periodic solutions for a second-order functional differential equation[J]. Boundary Value Problems, 2012, 2012: 1-11. [6] KONG Qingkai, WANG Min. Positive solutions of even order system periodic boundary value problems[J]. Nonlinear Analysis(Theory, Methods and Applications), 2010, 72(3/4):1778-1791. [7] FRANIC Ikechukwu Njoku, PIERPAOLO Omari. Singularly perturbed higher order periodic boundary value problems[J]. Journal of Mathematical Analysis Applications, 2004, 289(2):639-649. [8] LI Yongxiang. Positive solutions of higher-order periodic boundary value problems[J]. Computers and Mathematics with Applications, 2004, 48(1/2):153-161. [9] LI Yongxiang, FAN Hongxia. Existence of positive periodic solutions for higher-order ordinary differential equations[J]. Computers and Mathematics with Applications, 2011, 62(4):1715-1722. [10] 赵明睿, 李永祥. 一类高阶中立型微分方程的正周期解[J]. 吉林大学学报(理学版), 2016, 54(2):246-250. ZHAO Mingrui, LI Yongxiang. Positive periodic solutions for a kind of higher-order neutral differential equations[J]. Journal of Jilin University(Science Edition), 2016, 54(2):246-250. [11] CABADA A. The method of lower and upper solutions for nth-order periodic boundary value problem[J]. Journal of Applied Mathematics and Stochastic Analysis, 1994, 7(1):33-47. [12] DEIMLING K. Nonlinear functional analysis[M]. New York: Springer-Verlag, 1985. [13] GUO Dajun, LAKSHMIKANTHAM V. Nonlinear problems in abstract cones[M]. New York: Academic Press, 1988. |
[1] | 亓婷婷, 张振福, 刘衍胜. 一类具有耦合积分边值条件的分数阶微分系统正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(2): 71-78. |
[2] | 陈雨佳, 杨和. 一类三阶时滞微分方程在Banach空间中的周期解的存在性[J]. 山东大学学报(理学版), 2018, 53(8): 84-94. |
[3] | 闫东亮. 带有导数项的二阶周期问题正解[J]. 山东大学学报(理学版), 2017, 52(9): 69-75. |
[4] | 何志乾, 苗亮英. 带弱奇性的二阶阻尼微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2017, 52(10): 84-88. |
[5] | 王双明. 一类具有时滞的周期流行病模型的动力学分析[J]. 山东大学学报(理学版), 2017, 52(1): 81-87. |
[6] | 陈彬. 格林函数变号的三阶周期边值问题[J]. 山东大学学报(理学版), 2016, 51(8): 79-83. |
[7] | 岳园,田双亮,陈秀萍. 部分实现组合电路的等价验证优化算法[J]. 山东大学学报(理学版), 2016, 51(3): 116-121. |
[8] | 郭丽君. 非线性微分方程三阶三点边值问题正解的存在性[J]. 山东大学学报(理学版), 2016, 51(12): 47-53. |
[9] | 徐言超. 连续时间正系统的静态输出反馈鲁棒H∞控制[J]. 山东大学学报(理学版), 2016, 51(12): 87-94. |
[10] | 吴成明. 二阶奇异耦合系统正周期解的存在性[J]. 山东大学学报(理学版), 2015, 50(10): 81-88. |
[11] | 徐嫚. 带双参数的脉冲泛函微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2015, 50(06): 69-74. |
[12] | 郑春华, 刘文斌. 一类具有时滞的分数阶微分方程边值问题正解的存在性[J]. 山东大学学报(理学版), 2015, 50(03): 73-79. |
[13] | 刘军. 带Markovian跳的随机时滞微分方程EM数值方法的收敛率[J]. J4, 2013, 48(3): 84-88. |
[14] | 徐义红, 韩倩倩,汪涛,吕强. 集值优化问题ε-强有效元的Lagrange型最优性条件[J]. J4, 2013, 48(3): 80-83. |
[15] | 范进军,张雪玲,刘衍胜. 时间测度上带p-Laplace算子的m点边值问题正解的存在性[J]. J4, 2012, 47(6): 16-19. |
|