您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (6): 23-31.doi: 10.6040/j.issn.1671-9352.0.2019.655

• • 上一篇    

S〓*(M)空间中的Bochner-Wick积分

石佳,王才士,张丽霞,张银   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2020-06-01
  • 作者简介:石佳(1994— ), 女, 硕士研究生, 研究方向为随机分析. E-mail:sjia_nwnu2646@163.com
  • 基金资助:
    国家自然科学基金资助项目(11861057)

Bochner-Wick integral for S *(M)space

SHI Jia, WANG Cai-shi, ZHANG Li-xia, ZHANG Yin   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2020-06-01

摘要: S *(M)为离散时间正规鞅M的广义泛函空间。主要在Bernoulli噪声分析框架下,引入和讨论关于S *(M)-值测度和S *(M)-值函数的积分运算首先,定义S *(M)-值测度的概念,在此基础上利用Fock变换深入考察S *(M)-值测度的性质,获得这类测度在范数意义下可数可加的合适条件其次,定义S *(M)-值函数关于S *(M)-值测度的Bochner-Wick积分,建立相应的控制收敛定理以及其它一些结果。

关键词: 离散时间正规鞅, Fock变换, Bochner-Wick积分, 向量测度

Abstract: Let S *(M)be a generalized functional space of discrete-time normal martingale M. This paper introduces and discusses the integral operation of S *(M)-valued measure and S *(M)-valued function in the framework of Bernoulli noise analysis. First of all, the concept of S *(M)-valued measure is defined. On this basis, this paper deeply investigates the properties of S *(M)-valued measure by Fock transform, and obtains the appropriate conditions for the countably additive of this kind of measure in the sense of norm. Next, Bochner-Wick integral for S *(M)-valued function with respect to S *(M)-valued measure is defined and the corresponding control convergence theorem is established.

Key words: discrete-time normal martingale, Fock transform, Bochner-Wick integral, vector measure

中图分类号: 

  • O211.63
[1] HIDA T, KUO H H, POTTHOFF J, et al. White noise: an infinite dimensional calculus[M]. Dordrecht: Kluwer Academic Publisher, 1993.
[2] HUANG Zhiyuan, YAN Jiaan. Introduction to infinite dimensional stochastic analysis[M]. Dordrecht: Kluwer Academic Publisher, 1999.
[3] ÉMERY M. A discrete approach to the chaotic representation property[J]. Séminaire de Probabilités XXXV, 2001, 1755:123-138.
[4] PRIVAULT N. Stochastic analysis of Bernoulli processes[J]. Probability Surveys, 2008, 5(1):435-483.
[5] WANG Caishi, LU Yanchun, CHAI Huifang. An alternative approach to Privaults discrete-time chaotic calculus[J]. Journal of Mathematical Analysis and Applications, 2011, 373(2):643-654.
[6] WANG Caishi, CHEN Jinshu. Characterization theorems for generalized functionals of discrete-time normal martingale[J/OL]. Journal of Function Spaces, 2015[2019-08-02]. http://dx.doi.org/10.1155/2015/714745.
[7] 宁克标. 白噪声分析中的Bochner-Wick积分[J]. 应用概率统计, 1996, 12(2):239-246. NING Kebiao. Bochner-Wick integral in white noise analysis[J]. Chinese Journal of Applied Probability and Statistics, 1996, 20(2):239-246.
[8] 韩琦. 白噪声分析中广义算子值函数的Bochner-Wick积分[J]. 应用概率统计, 2014, 30(3):244-256. HAN Qi. Bochner-Wick integral of generalized operator valued function in white noise analysis[J]. Chinese Journal of Applied Probability and Statistics, 2014, 30(3):244-256.
[9] 陈金淑. B-值广义泛函值函数的 Bochner-Wick 积分[J]. 兰州理工大学学报, 2012, 38(4):136-139. CHEN Jinshu. Bochner-Wick integrals of functions valued in B-valued generalized functionals[J]. Journal of Lanzhou University of Technology, 2012, 38(4):136-139.
[10] WANG Caishi, ZHANG Jihong. Localization of quantum Bernoulli noises[J]. Journal of Mathematical Physics, 2013, 54(10):23-278.
[11] WANG Caishi, ZHANG Jihong. Wick analysis for Bernoulli noise functionals[J/OL]. Journal of Function Spaces, 2014[2019-08-02]. http://dx.doi.org/10.1155/2014/727341.
[12] BECNEL J J. Equivalence of topologies and borel fields for countably-Hilbert spaces[J]. Proceedings of the American Mathematical Society, 2006, 134(2):581-590.
[13] GELFAND I M, SHILOV G E. Spaces of fundamental and generalized functions[M]. New York: Academic Press, 1968.
[14] 夏道行, 严绍宗, 舒五昌,等. 泛函分析第二教程[M]. 北京:高等教育出版社, 1987. XIA Daoxing, YAN Shaozong, SHU Wuchang, et al. An advanced course in functional analysis[M]. Beijing: Higher Education Press, 1987.
[15] DIESTEL J, UHL J J, Jr. Vector measure[M] // Mathematics Surveys: Vol 15. Providence, Rhode Island: American Mathematical Society, 1977.
[16] WANG Caishi, CHEN Jinshu. Convergence theorems for generalized functional sequences of discrete-time normal martingales[J/OL]. Journal of Function Spaces, 2015 [2019-08-02]. http://dx.doi.org/10.1155/2015/360679.
[1] 肖新玲. 由马氏链驱动的正倒向随机微分方程[J]. 山东大学学报(理学版), 2018, 53(4): 46-54.
[2] 张亚娟,吕艳. 带有变阻尼的随机振动方程的逼近[J]. 山东大学学报(理学版), 2018, 53(4): 59-65.
[3] 崔静,梁秋菊. 分数布朗运动驱动的非局部随机积分微分系统的存在性与可控性[J]. 山东大学学报(理学版), 2017, 52(12): 81-88.
[4] 张春艳,郝胜男,冯立超. 一类非线性脉冲微分系统爆炸解的随机压制[J]. 山东大学学报(理学版), 2016, 51(2): 29-36.
[5] 方瑞, 马娇娇, 范胜君. 一类倒向随机微分方程解的稳定性定理[J]. 山东大学学报(理学版), 2015, 50(06): 39-44.
[6] 王春生, 李永明. 中立型多变时滞随机微分方程的稳定性[J]. 山东大学学报(理学版), 2015, 50(05): 82-87.
[7] 黄宗媛 张峰. 一类高维抛物型偏微分方程的粘性解[J]. J4, 2008, 43(12): 5-9.
[8] 李志涛,王光臣,木 超 . 一类随机最优控制问题的局部必要条件及在投资选择中的应用[J]. J4, 2007, 42(6): 7-11 .
[9] 韩宝燕,朱 波,石玉峰 . 非Lipschitz条件下的倒向随机微分方程的g-上解的极限定理[J]. J4, 2007, 42(1): 8-13 .
[10] 张 慧,聂秀山 . Knight不确定环境下欧式股票期权的最小定价模型[J]. J4, 2007, 42(11): 121-126 .
[11] 王光臣 . 部分可观测信息下的线性二次非零和随机微分对策[J]. J4, 2007, 42(6): 12-15 .
[12] 杨维强,杨 丽 . 倒向随机微分方程的非参估计及模拟[J]. J4, 2006, 41(2): 34-38 .
[13] 林乾,石玉峰 . 一般g-期望的收敛定理[J]. J4, 2008, 43(6): 28-30 .
[14] 王 赢,黄 珍 . 一类非Lipschitz的倒向随机发展方程适应解的存在惟一性[J]. J4, 2007, 42(6): 22-26 .
[15] 肖 华 . 多维反射倒向随机微分方程的解对参数的连续依赖性[J]. J4, 2007, 42(2): 68-71 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!