《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (4): 66-75.doi: 10.6040/j.issn.1671-9352.0.2020.195
• • 上一篇
辛银萍
XIN Yin-ping
摘要: 建立了参数型Marcinkiewicz积分在一类变指标Lebesgue空间上的加权有界性,进一步运用函数分层分解和权不等式等工具,得到了参数型Marcinkiewicz积分与有界平均振荡函数(function of bounded mean oscillation, BMO)b生成的高阶交换子在加权变指数Herz空间与加权变指数Herz-Morrey空间上的有界性。
中图分类号:
[1] STEIN E M. On the functions of Littlewood-Paley, Lusin and Marcinkiewicz[J]. Trans Amer Math Soc, 1958, 88(2):430-466. [2] SHI Xinfeng, JIANG Yinsheng. Weighted boundedness of parametric Marcinkiewicz integral and higher order commutator[J]. Analysis in Theory and Applications, 2009, 25(1):25-39. [3] 黄玲玲,赵凯. 变量核参数型Marcinkiewicz积分算子在加权Campanato空间的有界性[J]. 山东大学学报(理学版), 2016(10):1-5. HUANG Lingling, ZHAO Kai. Boundedness of the parameterized Marcinkiewicz integral operators with variable kernels on weighted Campanato spaces[J]. Journal of Shandong University(Natural Science), 2016(10):1-5. [4] CRUZ-URIBE D, FIORENZA A, MARTELL J, et al. The boundedness of classical operators on variable Lp spaces[J]. Ann Acad Sci Fenn Math, 2006, 31(1):239-264. [5] 王洪彬,傅尊伟,刘宗光. 变指标Lebesgue空间上的Marcinkiewicz积分高阶交换子[J]. 数学物理学报,2012, 32(6):1092-1101. WANG Hongbing, FU Zunwei, LIU Zongguang. Higher order commutators of Marcinkiewicz integral on variable Lebesgue spaces[J]. Acta Math Sci, 2012, 32(6):1092-1101. [6] 辛银萍,陶双平. 带变量核的Marcinkiewicz积分算子在变指标Herz型Hardy空间上的有界性[J]. 山东大学学报(理学版),2018(6):38-43. XIN Yinping, TAO Shuangping. The boundedness of Marcinkiewicz integrals operators with variable kernels on Herz-type Hardy spaces with variable exponent[J]. Journal of Shandong University(Natural Science), 2018(6):38-43. [7] 邵旭馗.带变量核的Marcinkiewicz积分交换子在变指标Herz-Hardy空间上的有界性[J].吉林大学学报(理学版), 2019,57(4):767-772. SHAO Xukui. Boundedness for commutators of Marcinkiewicz integrals operators with variable kernel on Herz-Hardy spaces with variable exponent[J]. Journal of Jilin University(Natural Science), 2019, 57(4):767-772. [8] 陶双平,师金利.变量核Marcinkiewicz积分在变指标Herz-Morrey空间上的加权估计[J].吉林大学学报(理学版), 2019,57(3):459-464. TAO Shuangping, SHI Jinli. Weighted estimates of marcinkiewicz integral with variable kernel on variable exponent Herz-Morrey spaces[J]. Journal of Jilin University(Natural Science), 2019, 57(3):459-464. [9] IZUKI M, NOI T. Boundedness of fractional integrals on weighted Herz spaces with variable exponent[J]. J Inequal Appl, 2016[2020-2-15].https://link.springer.com/content/pdf/10.1186/s13660-016-1142-9.pdf. [10] IZUKI M. Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent[J]. Math Sci Res J, 2009, 13(10):243-253. [11] KOVÁCIK O, RÁKOSNIK J. On spaces Lp(x) and W k,p(x)[J]. Czech Math J, 1991, 41(4):592-618. [12] WANG Liwei, SHU Lisheng. Boundedness of some sublinear operators on weighted variable Herz-Morrey spaces[J]. J Math Inequal, 2018, 12(1):31-42. [13] BENNETT C, SHARPLEY R. Interpolation of operators[J]. Pure Appl Math, 1988, 4(2):83-99. [14] CRUZ-URIBE D, FIORENZA A, NEUGEBAUER C J. Weighted norm inequalities for the maximal operator on variable Lebesgue spaces[J]. J Math Anal Appl, 2012, 394(2):744-760. [15] CRUZ-URIBE D, WANG L A D. Extrapolation and weighted norm inequalities in the variable Lebesgue spaces[J]. Trans Amer Math Soc, 2016, 369(2):1205-1235. [16] GULIYEV V S, HASANOV J J, BADALOV X A. Maximal and singular integral operators and their commutators on generalized weighted Morrey spaces with variable exponent[J]. Math Inequal Appl, 2018(1):41-61. [17] GARCIA-CUERVA J, RUBIO DE FRANCIA J L. Weighted norm inequalities and related topics[M]. Amsterdam: North-Holland Math Studies, 1985: 385-421. [18] DING Yong, LU Shanzhen, ZHANG Pu. Weighted weak type estimates for commutators of the Marcinkiewicz integrals[J]. Chinese Science: Mathematics, 2004, 47(1):83-95. |
[1] | 王敏,方小珍,瞿萌,束立生. 多线性Hardy-Littlewood极大算子交换子的有界性[J]. 《山东大学学报(理学版)》, 2020, 55(2): 16-22. |
[2] | 陶双平,杨雨荷. 分数次极大算子及交换子在λ-中心Morrey空间上的加权估计[J]. 《山东大学学报(理学版)》, 2019, 54(8): 68-75. |
[3] | 赵欢,周疆. 变指数Herz型Hardy空间上的多线性Calderón-Zygmund算子交换子[J]. 山东大学学报(理学版), 2018, 53(10): 42-50. |
[4] | 陆强德, 陶双平. Calderón-Zygmund 算子和分数次积分的交换子在齐型极大变指标 Lebesgue 空间上的有界性[J]. 山东大学学报(理学版), 2017, 52(9): 54-58. |
[5] | 姚俊卿,赵凯. 变指数Herz-Morrey空间上的分数次积分交换子[J]. 山东大学学报(理学版), 2017, 52(11): 100-105. |
[6] | 马小洁,赵凯. 分数次Hardy算子交换子在变指数空间的加权有界性[J]. 山东大学学报(理学版), 2017, 52(11): 106-110. |
[7] | 王杰,瞿萌,束立生. Littlewood-Paley算子及其交换子在变指数Herz空间上的有界性[J]. 山东大学学报(理学版), 2016, 51(4): 9-18. |
[8] | 王金苹,赵凯. 变指标Herz型空间上分数次积分的Lipschitz交换子[J]. 山东大学学报(理学版), 2016, 51(10): 6-10. |
[9] | 苟银霞, 陶双平, 戴惠萍. Herz型Hardy空间上粗糙核分数次积分及其交换子的加权估计[J]. 山东大学学报(理学版), 2014, 49(07): 80-87. |
[10] | 李浩静,陈峥立*,梁丽丽. 关于Schr-dinger不确定性关系的研究[J]. 山东大学学报(理学版), 2014, 49(06): 67-73. |
[11] | 赵凯,纪春静,黄智. 一类Marcinkiewicz积分交换子在Herz型Hardy空间中的有界性[J]. J4, 2013, 48(6): 1-4. |
[12] | 闫彦宗,邵旭馗,王素萍. 变量核的 Marcinkiewicz 高阶交换子在Hardy空间的有界性[J]. J4, 2013, 48(2): 67-71. |
[13] | 杜红珊,张蕾. 振荡积分算子交换子的Lipschitz估计*[J]. J4, 2012, 47(4): 80-83. |
[14] | 王立伟1,瞿萌2,范国良1. 齐次MorreyHerz空间中多线性交换子的中心BMO估计[J]. J4, 2012, 47(12): 82-87. |
[15] | 赵凯,董鹏娟,邵帅. 分数次积分算子交换子在λ-中心Morrey空间上的加权有界性[J]. J4, 2011, 46(12): 88-92. |
|