您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (4): 66-75.doi: 10.6040/j.issn.1671-9352.0.2020.195

• • 上一篇    

参数型Marcinkiewicz积分交换子在变指数Herz-Morrey空间的加权有界性

辛银萍   

  1. 兰州财经大学信息工程学院, 甘肃 兰州 730010
  • 发布日期:2021-04-13
  • 作者简介:辛银萍(1987— ), 女, 硕士, 讲师, 研究方向为调和分析及其应用. E-mail:xinyp1987@163.com
  • 基金资助:
    甘肃省高等学校创新能力提升资助项目(2020B-142)

Boundedness for commutators of parameterized Marcinkiewicz integral on weighted Herz-Morrey spaces with variable exponent

XIN Yin-ping   

  1. School of Information Engineering, Lanzhou University of Finance and Economics, Lanzhou 730010, Gansu, China
  • Published:2021-04-13

摘要: 建立了参数型Marcinkiewicz积分在一类变指标Lebesgue空间上的加权有界性,进一步运用函数分层分解和权不等式等工具,得到了参数型Marcinkiewicz积分与有界平均振荡函数(function of bounded mean oscillation, BMO)b生成的高阶交换子在加权变指数Herz空间与加权变指数Herz-Morrey空间上的有界性。

关键词: 参数型Marcinkiewicz积分, 交换子, 加权变指数Herz 空间, 加权变指数Herz-Morrey空间

Abstract: The weighted boundedness of parameterized Marcinkiewicz integral on a class of generalized Lebesgue spaces with variable exponent is established. Furthermore, by using hierarchical decomposition of functions and the weighted inequalities, the boundedness of the higher order commutators generated by parameterized Marcinkiewicz integral and function of bounded mean oscillation(BMO)b on weighted Herz spaces and weighted Herz-Morrey spaces with variable exponent are obtained.

Key words: parameterized Marcinkiewicz integral, commutator, weighted variable exponent Herz space, weighted variable exponent Herz-Morrey space

中图分类号: 

  • O174.22
[1] STEIN E M. On the functions of Littlewood-Paley, Lusin and Marcinkiewicz[J]. Trans Amer Math Soc, 1958, 88(2):430-466.
[2] SHI Xinfeng, JIANG Yinsheng. Weighted boundedness of parametric Marcinkiewicz integral and higher order commutator[J]. Analysis in Theory and Applications, 2009, 25(1):25-39.
[3] 黄玲玲,赵凯. 变量核参数型Marcinkiewicz积分算子在加权Campanato空间的有界性[J]. 山东大学学报(理学版), 2016(10):1-5. HUANG Lingling, ZHAO Kai. Boundedness of the parameterized Marcinkiewicz integral operators with variable kernels on weighted Campanato spaces[J]. Journal of Shandong University(Natural Science), 2016(10):1-5.
[4] CRUZ-URIBE D, FIORENZA A, MARTELL J, et al. The boundedness of classical operators on variable Lp spaces[J]. Ann Acad Sci Fenn Math, 2006, 31(1):239-264.
[5] 王洪彬,傅尊伟,刘宗光. 变指标Lebesgue空间上的Marcinkiewicz积分高阶交换子[J]. 数学物理学报,2012, 32(6):1092-1101. WANG Hongbing, FU Zunwei, LIU Zongguang. Higher order commutators of Marcinkiewicz integral on variable Lebesgue spaces[J]. Acta Math Sci, 2012, 32(6):1092-1101.
[6] 辛银萍,陶双平. 带变量核的Marcinkiewicz积分算子在变指标Herz型Hardy空间上的有界性[J]. 山东大学学报(理学版),2018(6):38-43. XIN Yinping, TAO Shuangping. The boundedness of Marcinkiewicz integrals operators with variable kernels on Herz-type Hardy spaces with variable exponent[J]. Journal of Shandong University(Natural Science), 2018(6):38-43.
[7] 邵旭馗.带变量核的Marcinkiewicz积分交换子在变指标Herz-Hardy空间上的有界性[J].吉林大学学报(理学版), 2019,57(4):767-772. SHAO Xukui. Boundedness for commutators of Marcinkiewicz integrals operators with variable kernel on Herz-Hardy spaces with variable exponent[J]. Journal of Jilin University(Natural Science), 2019, 57(4):767-772.
[8] 陶双平,师金利.变量核Marcinkiewicz积分在变指标Herz-Morrey空间上的加权估计[J].吉林大学学报(理学版), 2019,57(3):459-464. TAO Shuangping, SHI Jinli. Weighted estimates of marcinkiewicz integral with variable kernel on variable exponent Herz-Morrey spaces[J]. Journal of Jilin University(Natural Science), 2019, 57(3):459-464.
[9] IZUKI M, NOI T. Boundedness of fractional integrals on weighted Herz spaces with variable exponent[J]. J Inequal Appl, 2016[2020-2-15].https://link.springer.com/content/pdf/10.1186/s13660-016-1142-9.pdf.
[10] IZUKI M. Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent[J]. Math Sci Res J, 2009, 13(10):243-253.
[11] KOVÁCIK O, RÁKOSNIK J. On spaces Lp(x) and W k,p(x)[J]. Czech Math J, 1991, 41(4):592-618.
[12] WANG Liwei, SHU Lisheng. Boundedness of some sublinear operators on weighted variable Herz-Morrey spaces[J]. J Math Inequal, 2018, 12(1):31-42.
[13] BENNETT C, SHARPLEY R. Interpolation of operators[J]. Pure Appl Math, 1988, 4(2):83-99.
[14] CRUZ-URIBE D, FIORENZA A, NEUGEBAUER C J. Weighted norm inequalities for the maximal operator on variable Lebesgue spaces[J]. J Math Anal Appl, 2012, 394(2):744-760.
[15] CRUZ-URIBE D, WANG L A D. Extrapolation and weighted norm inequalities in the variable Lebesgue spaces[J]. Trans Amer Math Soc, 2016, 369(2):1205-1235.
[16] GULIYEV V S, HASANOV J J, BADALOV X A. Maximal and singular integral operators and their commutators on generalized weighted Morrey spaces with variable exponent[J]. Math Inequal Appl, 2018(1):41-61.
[17] GARCIA-CUERVA J, RUBIO DE FRANCIA J L. Weighted norm inequalities and related topics[M]. Amsterdam: North-Holland Math Studies, 1985: 385-421.
[18] DING Yong, LU Shanzhen, ZHANG Pu. Weighted weak type estimates for commutators of the Marcinkiewicz integrals[J]. Chinese Science: Mathematics, 2004, 47(1):83-95.
[1] 王敏,方小珍,瞿萌,束立生. 多线性Hardy-Littlewood极大算子交换子的有界性[J]. 《山东大学学报(理学版)》, 2020, 55(2): 16-22.
[2] 陶双平,杨雨荷. 分数次极大算子及交换子在λ-中心Morrey空间上的加权估计[J]. 《山东大学学报(理学版)》, 2019, 54(8): 68-75.
[3] 赵欢,周疆. 变指数Herz型Hardy空间上的多线性Calderón-Zygmund算子交换子[J]. 山东大学学报(理学版), 2018, 53(10): 42-50.
[4] 陆强德, 陶双平. Calderón-Zygmund 算子和分数次积分的交换子在齐型极大变指标 Lebesgue 空间上的有界性[J]. 山东大学学报(理学版), 2017, 52(9): 54-58.
[5] 姚俊卿,赵凯. 变指数Herz-Morrey空间上的分数次积分交换子[J]. 山东大学学报(理学版), 2017, 52(11): 100-105.
[6] 马小洁,赵凯. 分数次Hardy算子交换子在变指数空间的加权有界性[J]. 山东大学学报(理学版), 2017, 52(11): 106-110.
[7] 王杰,瞿萌,束立生. Littlewood-Paley算子及其交换子在变指数Herz空间上的有界性[J]. 山东大学学报(理学版), 2016, 51(4): 9-18.
[8] 王金苹,赵凯. 变指标Herz型空间上分数次积分的Lipschitz交换子[J]. 山东大学学报(理学版), 2016, 51(10): 6-10.
[9] 苟银霞, 陶双平, 戴惠萍. Herz型Hardy空间上粗糙核分数次积分及其交换子的加权估计[J]. 山东大学学报(理学版), 2014, 49(07): 80-87.
[10] 李浩静,陈峥立*,梁丽丽. 关于Schr-dinger不确定性关系的研究[J]. 山东大学学报(理学版), 2014, 49(06): 67-73.
[11] 赵凯,纪春静,黄智. 一类Marcinkiewicz积分交换子在Herz型Hardy空间中的有界性[J]. J4, 2013, 48(6): 1-4.
[12] 闫彦宗,邵旭馗,王素萍. 变量核的 Marcinkiewicz 高阶交换子在Hardy空间的有界性[J]. J4, 2013, 48(2): 67-71.
[13] 杜红珊,张蕾. 振荡积分算子交换子的Lipschitz估计*[J]. J4, 2012, 47(4): 80-83.
[14] 王立伟1,瞿萌2,范国良1. 齐次MorreyHerz空间中多线性交换子的中心BMO估计[J]. J4, 2012, 47(12): 82-87.
[15] 赵凯,董鹏娟,邵帅. 分数次积分算子交换子在λ-中心Morrey空间上的加权有界性[J]. J4, 2011, 46(12): 88-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!