您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (12): 59-66.doi: 10.6040/j.issn.1671-9352.0.2021.051

• • 上一篇    

有界线性算子的拓扑一致降标与(R)性质

赵小鹏1,戴磊1,曹小红2*   

  1. 1.渭南师范学院数学与统计学院, 陕西 渭南 714099;2.陕西师范大学数学与统计学院, 陕西 西安 710119
  • 发布日期:2021-11-25
  • 作者简介:赵小鹏(1968— ),男,硕士,副教授,研究方向为算子理论与算子代数. E-mail:zxp@wnu.edu.cn *通信作者简介:曹小红(1972— ),女,教授,博士生导师,研究方向为算子理论与算子代数. E-mail:xiaohongcao@snnu.edu.cn
  • 基金资助:
    陕西省自然科学基金资助项目(2021JM-519);渭南师范学院数学特色学科项目(18TSXK03);渭南师范学院人才项目(2021RC02)

Topological uniform descent and property (R) for bounded linear operators

ZHAO Xiao-peng1, DAI Lei1, CAO Xiao-hong2*   

  1. 1. School of Mathematics and Statistics, Weinan Normal University, Weinan 714099, Shaanxi, China;
    2. School of Mathematics and Statistics, Shaanxi Normal University, Xian 710119, Shaanxi, China
  • Published:2021-11-25

摘要: 设H为无限维复可分的Hilbert空间,B(H)为H上的有界线性算子的全体, T∈B(H)称为满足(R)性质,若σa(T)\σab(T)=π00(T),其中σa(T)和σab(T)分别表示算子T的逼近点谱和Browder本质逼近点谱,π00(T)={λ∈iso σ(T):0<dim N(T-λI)<∞}。 利用拓扑一致降标性质,首先给出了有界线性算子满足(R)性质的充要条件; 之后通过拓扑一致降标性质,得到了算子函数满足(R)性质的判定方法; 最后,上三角算子矩阵的(R)性质得到了研究。

关键词: 拓扑一致降标, (R)性质,

Abstract: Let H be a complex separable infinite dimensional Hilbert space and B(H) be the algebra of all bounded linear operators on H, T∈B(H) is said to satisfy property (R) if σa(T)\σab(T)=π00(T), where σa(T) and σab(T)denote the approximate point spectrum and the Browder essential approximate point spectrum of T respectively, and π00(T)={λ∈iso σ(T):0N(T-λI)<∞}. By using the property of topological uniform descent, the necessary and sufficient conditions for which the property (R) holds for bounded linear operators are given. In addition, the new judgements for operator functions satisfying property (R) according to the property of topological uniform descent are discussed. Also, the property (R) for upper triangular operator matrices is explored.

Key words: topological uniform descent, property (R), spectrum

中图分类号: 

  • O177.2
[1] WEYL H V. Über beschränkte quadratische formen, deren differenz vollstetig ist[J]. Rendiconti Del Circolo Matematico Di Palermo, 1909, 27(1):373-392.
[2] HARTE R, LEE W Y. Another note on Weyls theorem[J]. Transactions of the American Mathematical Society, 1997, 349(5):2115-2124.
[3] RAKO CEVIC V. Operators obeying a-Weyls theorem[J]. Revue Roumaine des Mathematiques Pures et Appliquees, 1989, 34(10):915-919.
[4] RAKO CEVIC V. On a class of operators[J]. Matematicki Vesnik, 1985, 37(4):423-426.
[5] AIENA P, GUILLÉN J R, PEÑA P. Property (R) for bounded linear operators[J]. Mediterranean Journal of Mathematics, 2011, 8(4):491-508.
[6] AIENA P, APONTE E, GUILLÉN J R, et al. Property(R) under perturbations[J]. Mediterranean Journal of Mathematics, 2013, 10(1):367-382.
[7] JIA Boting,FENG Youling. Property(R)under compact perturbations[J]. Mediterranean Journal of Mathematics, 2020, 17(2):491-508.
[8] GRABINER S. Uniform ascent and descent of bounded operaters[J]. Journal of the Mathematical Society of Japan, 1982, 34(2):317-337.
[9] RADJAVI H, ROSENTHAL P. Invariant subspaces[M]. 2nd ed. Mineola: Dover Publications, 2003.
[10] DONG Jiong, CAO Xiaohong. Compact perturbations of both SVEP and Weyls theorem for 3×3 upper triangular operator matrices[J]. Linear and Multilinear Algebra, 2020, 68(10):2020-2033.
[11] DONG Jiong, CAO Xiaohong. The(generalized)Weylness of upper triangular operator matrices[J]. Analysis Mathematica, 2020, 46(3):465-481.
[12] CUI Miaomiao, CAO Xiaohong. Weyls theorem for upper triangular operator matrix and perturbations[J]. Linear and Multilinear Algebra, 2018, 66(7):1-12.
[1] 杨影,李沐春,张友. 剖分Q-邻接冠图的广义特征多项式及其应用[J]. 《山东大学学报(理学版)》, 2021, 56(7): 65-72.
[2] 邓书鸿,郭传恩,姜红,聂磊. 核磁共振指纹图谱用于阿胶的鉴别[J]. 《山东大学学报(理学版)》, 2021, 56(7): 103-110.
[3] 王曾珍,刘华勇,查东东. 带形状参数的三角β-B曲线的渐进迭代逼近[J]. 《山东大学学报(理学版)》, 2021, 56(6): 81-94.
[4] 巫朝霞,王弋. 基于Paillier同态的异质频谱安全拍卖算法[J]. 《山东大学学报(理学版)》, 2021, 56(3): 23-27.
[5] 杨婷,朱恒东,马盈仓,汪义瑞,杨小飞. 基于L2,1范数和流形正则项的半监督谱聚类算法[J]. 《山东大学学报(理学版)》, 2021, 56(3): 67-76.
[6] 孙晨辉,白珍贵,曹小红. 有界线性算子的Browder定理的判定[J]. 《山东大学学报(理学版)》, 2021, 56(2): 34-40.
[7] 卢鹏丽,刘文智. 图的广义距离谱[J]. 《山东大学学报(理学版)》, 2020, 55(9): 19-28.
[8] 秦玲. 空间中相似变换下一些自仿测度的非谱性质[J]. 《山东大学学报(理学版)》, 2020, 55(2): 23-32.
[9] 姜虎,曹小红. 算子函数的(ω)性质的判定[J]. 《山东大学学报(理学版)》, 2020, 55(10): 83-87.
[10] 冯高慧子,曹小红. 有界线性算子的a-Weyl定理的判定[J]. 《山东大学学报(理学版)》, 2020, 55(10): 88-94.
[11] 戴磊,黄小静,郭奇. 1)性质与单值扩张性质[J]. 《山东大学学报(理学版)》, 2019, 54(8): 55-61.
[12] 刘萤,曹小红. 一致可逆性质与Weyl定理的判定[J]. 《山东大学学报(理学版)》, 2019, 54(6): 112-117.
[13] 周安民,户磊,刘露平,贾鹏,刘亮. 基于熵时间序列的恶意Office文档检测技术[J]. 《山东大学学报(理学版)》, 2019, 54(5): 1-7.
[14] 于倩倩,魏广生. Jacobi矩阵的逆谱问题及其应用[J]. 山东大学学报(理学版), 2018, 53(8): 66-76.
[15] 刘艳芳,王玉玉. Adams谱序列E2项的一些注记[J]. 山东大学学报(理学版), 2018, 53(8): 43-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!