《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (12): 55-63.doi: 10.6040/j.issn.1671-9352.0.2021.656
• • 上一篇
韦营营,张婧*
WEI Ying-ying, ZHANG Jing*
摘要: 通过两个算子族和Peetre极大函数及Hardy-Littlewood极大算子在向量值函数空间上的有界性建立了变指标Herz Triebel-Lizorkin空间范数的等价刻画,并由此得到Marcinkiewicz积分交换子在变指标Herz Triebel-Lizorkin空间上的有界性结果。
中图分类号:
[1] PALUSZYNSKI M. Characterization of Besov spaces via the commutator operator of Coifman, Rochberg and Weiss[J]. Indiana Univ Math J, 1995, 44(1):1-17. [2] 陈冬香, 王娅昕. Marcinkiewicz交换子在Triebel-Lizorkin空间中的有界性[J]. 浙江大学学报(理学版), 2003, 30(5):481-484. CHEN Dongxiang, WANG Yaxin. Boundedness of the commutators for the Marcinkiewicz integral in Triebel-Lizorkin space[J]. Journal of Zhejiang University(Science Edition), 2003, 30(5):481-484. [3] 陆善镇, 默会霞. Marcinkiewicz积分交换子的有界性[J]. 数学学报, 2006, 49(3):481-490. LU Shanzhen, MO Huixia. The boundedness of commutators for the Marcinkiewicz integrals[J]. Acta Mathematica Sinca, 2006, 49(3):481-490. [4] FANG Chenglong. Characterizations of commutators of singular integaral operators on variable exponent spaces[J]. Journal of Mathematical Research with Applications, 2020, 40(5):519-533. [5] STEIN E M. On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz[J]. Trans Amer Math Soc, 1958, 88(2):430-466. [6] 辛银萍. 参数型Marcinkiewicz积分交换子在变指数Herz-Morrey空间的加权有界性[J]. 山东大学学报(理学版), 2021, 56(4):66-75, 85. XIN Yinping. Boundedness for commutators of parameterized Marcinkiewicz integral on weighted Herz-Morrey spaces with variable exponent[J]. Journal of Shandong University(Natural Science), 2021, 56(4):66-75, 85. [7] 辛银萍, 陶双平. 带变量核的Marcinkiewicz积分算子在变指标Herz型Hardy空间上的有界性[J]. 山东大学学报(理学版), 2018, 53(6):38-43. XIN Yinping, TAO Shuangping. Boundedness of Marcinkiewicz integrals operators with variable kernels on Herz-type Hardy spaces with variable exponent[J]. Journal of Shandong University(Natural Science), 2018, 53(6):38-43. [8] 王洪彬, 傅尊伟, 刘宗光. 变指标Lebesgue空间上的Marcinkiewicz积分高阶交换子[J]. 数学物理学报, 2012, 32(6):1092-1101. WANG Hongbing, FU Zunwei, LIU Zongguang. Higher order commutators of Marcinkiewicz integral on variable Lebesgue spaces[J]. Acta Math Sci, 2012, 32(6):1092-1101. [9] WANG Liwei. Marcinkiewicz integral operators and commutators on Herz spaces with variable exponents[J/OL]. J Funct Spaces, 2014[2022-03-10]. http://dx.doi.org/10.1155/2014/430365. [10] 王洪彬. 变指标Herz型Hardy空间上的Marcinkiewicz积分[J]. 山东理工大学学报(自然科学版), 2015, 29(4):16-20. WANG Hongbing. Marcinkiewicz integrals on Herz-type Hardy spaces with variable exponent[J]. Journal of Shandong University of Technology(Natural Science Edition), 2015, 29(4):16-20. [11] 陶双平, 李露露. 变指标Morrey空间上的Marcinkiewicz积分及交换子的有界性[J]. 数学年刊A辑, 2016, 37(1):59-74. TAO Shuangping, LI Lulu. Boundedness of Marcinkiewicz integrals and commutators on Morrey spaces with variable exponents[J]. Chinese Annals of Mathematics, Series A, 2016, 37(1):59-74. [12] SHI Chune, XU Jingshi. Herz type Besov and Triebel-Lizorkin spaces with variable exponent[J]. Front Math China, 2013, 8(4):904-921. [13] IZUKI M. Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization[J]. Anal Math, 2010, 36(1):33-50. [14] DEVORE R A, SHARPLEY R C. Maximal functions measuring smoothness[J]. Mem Amer Math Soc, 1984, 47(293):1-115. [15] KOVACIK O, RAKOSNIK J. On spaces Lp(·) and W1, p(·)[J]. Czechoslovak Math J, 1991, 41(4):592-618. [16] LIU Zongguang, WANG Hongbin. Boundedness of Marcinkiewicz integrals on Herz spaces with variable exponent[J]. Jordan J Math Stat, 2012, 5(4):223-239. [17] SEEGER A. A note on Triebel-Lizorkin spaces[J]. Banach Center Publ, 1989, 22(1):391-400. |
[1] | 史鹏伟,陶双平. 极大变指标Herz空间上的参数型粗糙核Littlewood-Paley算子[J]. 《山东大学学报(理学版)》, 2022, 57(12): 45-54. |
[2] | 辛银萍. 参数型Marcinkiewicz积分交换子在变指数Herz-Morrey空间的加权有界性[J]. 《山东大学学报(理学版)》, 2021, 56(4): 66-75. |
[3] | 王敏,方小珍,瞿萌,束立生. 多线性Hardy-Littlewood极大算子交换子的有界性[J]. 《山东大学学报(理学版)》, 2020, 55(2): 16-22. |
[4] | 陶双平,杨雨荷. 分数次极大算子及交换子在λ-中心Morrey空间上的加权估计[J]. 《山东大学学报(理学版)》, 2019, 54(8): 68-75. |
[5] | 赵欢,周疆. 变指数Herz型Hardy空间上的多线性Calderón-Zygmund算子交换子[J]. 山东大学学报(理学版), 2018, 53(10): 42-50. |
[6] | 陆强德, 陶双平. Calderón-Zygmund 算子和分数次积分的交换子在齐型极大变指标 Lebesgue 空间上的有界性[J]. 山东大学学报(理学版), 2017, 52(9): 54-58. |
[7] | 姚俊卿,赵凯. 变指数Herz-Morrey空间上的分数次积分交换子[J]. 山东大学学报(理学版), 2017, 52(11): 100-105. |
[8] | 马小洁,赵凯. 分数次Hardy算子交换子在变指数空间的加权有界性[J]. 山东大学学报(理学版), 2017, 52(11): 106-110. |
[9] | 王杰,瞿萌,束立生. Littlewood-Paley算子及其交换子在变指数Herz空间上的有界性[J]. 山东大学学报(理学版), 2016, 51(4): 9-18. |
[10] | 黄玲玲,赵凯. 变量核参数型Marcinkiewicz积分算子在加权Campanato空间的有界性[J]. 山东大学学报(理学版), 2016, 51(10): 1-5. |
[11] | 王金苹,赵凯. 变指标Herz型空间上分数次积分的Lipschitz交换子[J]. 山东大学学报(理学版), 2016, 51(10): 6-10. |
[12] | 苟银霞, 陶双平, 戴惠萍. Herz型Hardy空间上粗糙核分数次积分及其交换子的加权估计[J]. 山东大学学报(理学版), 2014, 49(07): 80-87. |
[13] | 李浩静,陈峥立*,梁丽丽. 关于Schr-dinger不确定性关系的研究[J]. 山东大学学报(理学版), 2014, 49(06): 67-73. |
[14] | 赵凯,纪春静,黄智. 一类Marcinkiewicz积分交换子在Herz型Hardy空间中的有界性[J]. J4, 2013, 48(6): 1-4. |
[15] | 闫彦宗,邵旭馗,王素萍. 变量核的 Marcinkiewicz 高阶交换子在Hardy空间的有界性[J]. J4, 2013, 48(2): 67-71. |
|