您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (6): 98-102.doi: 10.6040/j.issn.1671-9352.0.2023.047

•   • 上一篇    下一篇

关于Sylow p-子群的极大子群的$\mathscr{F}$-可补性对群结构的影响

高百俊1(),汤菊萍2,高志超3,*(),宋菊4   

  1. 1. 伊犁师范大学数学与统计学院, 新疆 伊宁 835000
    2. 无锡职业技术学院基础课部, 江苏 无锡 214121
    3. 华中师范大学数学与统计学院, 湖北 武汉 430079
    4. 扬州大学数学科学学院, 江苏 扬州 225002
  • 收稿日期:2023-02-14 出版日期:2024-06-20 发布日期:2024-06-17
  • 通讯作者: 高志超 E-mail:dqgbj2008@163.com;1102576920@qq.com
  • 作者简介:高百俊(1980—), 女, 教授, 博士, 研究方向为有限群论. E-mail: dqgbj2008@163.com
  • 基金资助:
    国家自然科学基金资助项目(12371018);国家自然科学基金资助项目(11701223);江苏省高等学校基础科学(自然科学)研究项目(22KJB110024);新疆维吾尔自治区天山青年计划资助项目(2020Q023);伊犁师范大学提升学科综合实力专项自科一般项目(22xkzy19)

Influence of $\mathscr{F}$-supplemented property of maximal subgroups of Sylow p-subgroup on the structure of groups

Baijun GAO1(),Juping TANG2,Zhichao GAO3,*(),Ju SONG4   

  1. 1. School of Mathematics and Statistics, Yili Normal University, Yining 835000, Xinjiang, China
    2. Department of Fundamental Courses, Wuxi Institute of Technology, Wuxi 214121, Jiangsu, China
    3. School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, Hubei, China
    4. School of Mathematical Sciences, Yangzhou University, Yangzhou 225002, Jiangsu, China
  • Received:2023-02-14 Online:2024-06-20 Published:2024-06-17
  • Contact: Zhichao GAO E-mail:dqgbj2008@163.com;1102576920@qq.com

摘要:

结合群类理论, 将群类$S_{p}^{*}$拓展到群类$S_{p^{2}}^{*}$$S_{p^{3}}^{*}$, 并由此定义$S_{p^{*} i}^{*}$可补子群, $i=1, 2, 3$。进一步利用Sylow $p$-子群的极大子群的$S_{p^i}^{*}$-可补性质研究广义$p$-可解群的构造。

关键词: Sylow p-子群, 极大子群, 可补子群, 广义p-可解群

Abstract:

Using the theory of group classes, the group classes $S_{p^{2}}^{*}$ and $S_{p^{3}}^{*}$ are obtained by generalizing the group class $S_{p}^{*}$, and $S_{p^i}^{*}$-supplemented subgroups are defined, where $i=1, 2, 3$. Furthermore, the structure of generalized $p$-solvable groups is studied by using $S_{p^{i}}^{*}$-supplemented property of maximal subgroups of Sylow $p$-subgroup.

Key words: Sylow p-subgroup, maximal subgroup, supplemented subgroup, generalized p-solvable group

中图分类号: 

  • O152.1
1 GUO Wenbin . The theory of classes of groups[M]. Boston: Kluwer Academic Publishers, 2000.
2 HUPPERT B , BLACKBURN N . Finite groups Ⅲ[M]. New York: Springer-Verlag, 1982.
3 ARAD Z , WARD M B . New criteria for the solvability of finite groups[J]. Journal of Algebra, 1982, 77 (1): 234- 246.
doi: 10.1016/0021-8693(82)90288-5
4 WANG Yanming . Finite groups with some subgroups of Sylow subgroups c-supplemented[J]. Journal of Algebra, 2000, 224 (2): 467- 478.
doi: 10.1006/jabr.1999.8079
5 QIAN Guohua . Finite groups whose maximal subgroups of Sylow p-subgroups admit a p-solvable supplement[J]. Science China Mathematics, 2013, 56 (5): 1015- 1018.
doi: 10.1007/s11425-012-4485-9
6 MIAO Long , LEMPKEN W . On $\mathscr{M}$-supplemented subgroups of finite groups[J]. Journal of Group Theory, 2009, 12 (2): 271- 287.
7 BALLESTER-BOLINCHES A , GUO X Y . On complemented subgroups of finite groups[J]. Archiv Der Mathematik, 1999, 72 (3): 161- 166.
doi: 10.1007/s000130050317
8 MONAKHOV V S , TROFIMUK A A . On the supersolubility of a finite group with NS-supplemented subgroups[J]. Acta Mathematica Hungarica, 2020, 160 (1): 161- 167.
doi: 10.1007/s10474-019-00997-4
9 MONAKHOV V S , KNIAHINA V N . Finite groups with complemented subgroups of prime orders[J]. Journal of Group Theory, 2015, 18 (6): 905- 912.
doi: 10.1515/jgth-2015-0023
10 MIAO Long , TANG Juping . A new condition for solvable groups[J]. Journal of Pure and Applied Algebra, 2017, 221 (10): 2504- 2510.
doi: 10.1016/j.jpaa.2016.12.035
11 ZHANG Jia , QIU Tingting , MIAO Long , et al. Notes on solvability and p-supersolvability of finite groups[J]. Algebra Colloquium, 2019, 26 (1): 139- 146.
doi: 10.1142/S1005386719000130
12 ZHANG Jia , MIAO Long , BAO Hongwei . On nearly $\mathscr{M}$-supplemented primary subgroups of finite groups[J]. Communications in Algebra, 2019, 47 (2): 896- 903.
doi: 10.1080/00927872.2018.1498868
13 DONG Shuqin , QIU Tingting , GAO Zhichao , et al. A generalization of Skiba's problem[J]. Publicationes Mathematicae Debrecen, 2022, 100 (1/2): 1- 10.
14 DONG Shuqin , MIAO Long , GAO Baijun . On weakly $\mathscr{M}$-supplemented subgroups of finite groups[J]. Communications in Algebra, 2021, 49 (9): 4021- 4027.
doi: 10.1080/00927872.2021.1910701
15 GAO Zhichao , LI Jinbao , MIAO Long . On CAPSp*-subgroups of finite groups[J]. Communications in Algebra, 2021, 49 (3): 1120- 1127.
doi: 10.1080/00927872.2020.1828443
16 GUO W B , SHUM K P , SKIBA A N . G-covering subgroup systems for the classes of supersoluble and nilpotent groups[J]. Israel Journal of Mathematics, 2003, 138 (1): 125- 138.
doi: 10.1007/BF02783422
17 ISAACS I M . Finite group theory[M]. Providence: American Mathematical Society, 2008.
18 KURZWEIL H , STELLMACHER B . The theory of finite groups: an introduction[M]. New York: Springer, 2004.
[1] 曹建基,王俊新,白鹏飞. 蕴含交换极大子群的极大类3-群上的光滑斜态射[J]. 《山东大学学报(理学版)》, 2024, 59(4): 23-30.
[2] 陈心丹,许丽,缪龙,刘威. 有限群的2-极大子群的边界因子[J]. 《山东大学学报(理学版)》, 2023, 58(2): 1-5.
[3] 史江涛,任惠瑄. 关于非幂零极大子群皆正规的有限群具有Sylow塔的注记[J]. 《山东大学学报(理学版)》, 2021, 56(8): 58-60.
[4] 刘鑫,吴珍凤,杨南迎. 有限群的m-S-可补子群[J]. 《山东大学学报(理学版)》, 2021, 56(4): 8-13.
[5] 毛月梅,杨南迎. 有限群的p-幂零性和超可解性[J]. 山东大学学报(理学版), 2016, 51(4): 39-42.
[6] 高辉,高胜哲*,尹丽. 子群的θ-完备和群的结构[J]. 山东大学学报(理学版), 2014, 49(03): 43-45.
[7] 高辉,高胜哲,尹丽. 关于极大子群的θ-偶[J]. J4, 2011, 46(2): 97-100.
[8] 普昭年1,汤菊萍2,顾春华3. 局部子群的性质对群构造的影响[J]. J4, 2011, 46(12): 51-54.
[9] 王俊新. 几则有限群可解的条件[J]. J4, 2009, 44(8): 35-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 董爱君 李国君 邹青松. 含相邻三角形的平面图的列表边和列表全染色[J]. J4, 2009, 44(10): 17 -20 .
[2] 刘天宝,李宝宗,彭艳芬 . 有机物对沙癙幼虫麻醉活性的构效关系研究[J]. J4, 2006, 41(6): 129 -131 .
[3] 刘甲国 . 高阶的分数阶的粘弹性材料本构模型的复模量与复柔量[J]. J4, 2008, 43(4): 85 -88 .
[4] 雷雪萍. 几乎C-倾斜模[J]. J4, 2011, 46(2): 101 -104 .
[5] 许兰图 . 非线性双曲[J]. J4, 2006, 41(4): 20 -24 .
[6] 袁 杰,史海波,刘 昶,单玉刚,尚文利 . 基于模糊统计的模糊Petri网token确定方法[J]. J4, 2008, 43(3): 30 -33 .
[7] 唐益明, 李小梅, 吴玺. 面向R-蕴涵算子的FMT-泛三Ⅰ*算法[J]. 山东大学学报(理学版), 2014, 49(08): 22 -27 .
[8] 侯建锋,王纪辉,刘桂真 . 二分图上有限制条件的(g,f)因子和f因子[J]. J4, 2006, 41(2): 48 -51 .
[9] 师铭,魏宗田,刘勇,翁婷婷. 图的顶点赋权邻域粘连度[J]. 《山东大学学报(理学版)》, 2021, 56(5): 26 -32 .
[10] 李飞序,严飞,程斌林,张立强. 面向LPWAN的受限设备协议漏洞自动化检测框架[J]. 《山东大学学报(理学版)》, 2023, 58(9): 39 -50 .